
MARMARA CREDIT LOOPS

MARMARA CHAIN v.1.2.0

MARMARA CONNECTOR v.0.4.2 Alpha

MCL DEVELOPER GUIDE

2024

1

Contents
Contents 2

Marmara Credit Loops 3

What is MCL? What are the Features? 7

How Does MCL Work? How Can You Earn MCL? 9

Easy Installation of Marmara Blockchain and MCL Coin Production with Marmara Connector 10

Build Marmara from Source 14

Getting Started with Marmara 19

How to make Marmara Credit Loops 31

Installing Marmara from Precompiled Binaries 37

Understanding Marmara Chain 40

Unlock the Power of Marmara Blockchain Staking 41

Experience the Power of MCL Staking on Marmara Chain 43

Why Marmara (MCL) Coin Stands Out 45

Marmara Connector 47

MCL Concise Beginner's Guide 61

Transactions on Cryptocurrency Exchanges and Obtaining MCL 62

Answers to Frequently Asked Questions 65

Links 69

Important Notice to Users 71

License Details 72

Note: This document was prepared by Marmara community volunteers, using the official
documentation of the Marmara Chain project and the information on the Marmara D iscord channel
of the community. Each source is mentioned under the relevant topic.

2

https://marmara.io/discord
https://marmara.io/discord
https://marmara.io/discord

Marmara Credit Loops
MCL, the First and the only DeFi system in the World designed to run in Real Economy.

Marmara Credit Loops on MarmaraChain, a trust based/self assured peer-to-peer credit creation and
circulation system, is the very first digitized version of the widely used analog post-dated cheques
in the World. Marmara Credit Loops (MCL) have most of the features provided by the Komodo
Blockchain technologies and have been developed based on the way of smart contracts with
Custom Consensus (CC) system in Komodo Antara Framework.

In addition to being the very first digital version of the credit loops, due to its structure and
conforming operations with the blockchain technology, Marmara Chain is very unique in the world
that implements blockchain in such a way.

The credit loops are applied directly onto the blockchain core. It is not possible to intervene,
manipulate or change it in any ways.

The properties of the system are summarized below:

 Works best in Real Economy: MCL is a DeFi system designed to run in real economy during
shopping. Both issuer and holders can earn from 3x staking during shopping in life cycle of a credit
loop. Credits in a loop can be endorsed and circulated until maturity date.

 Half of blocks comes as activated/locked: 50% of blocks found are already activated/locked.
Hence, they readily join in staking process. You can unlock them anytime for spending or lock in
credit loops for 3x staking power.

 3x staking in Credit Loops: 3x staking when Activating/locking Coins in Credit Loops. They are
settled automatically on maturity date and cannot be opened by anyone. But credits may be
endorsed to buy goods and services. They act as money during shopping.

 Nonmanipulable, nonintervenable credit loops: Credit loops cannot be stopped and credits in
loops can circulate during shopping until maturity date. The nodes in a loop is maximum 1000.

 Block Rewards: Block time is 1 minute and rewards per block are 30 Marmara (MCL).

 75% Staking: Staking is only possible with activated/locked coins. You have the 3x staking
power when staking with coins locked in Credit Loops.

 25% Mining (PoW): MCL uses Equihash algorithm for Mining with PoW which has only 25%
effect in block rewards. You can mine Marmara similar to Komodo and Zcash mining.

To the contrary belief, banks are not the sole institutions for creating money based on credit. In
many countries all over the world, like banks, individuals are able to create money through post-
dated cheques or promissory notes in a peer to peer manner. They work best in real economy.

Inspired by the paper-based blockchain nature of these promissory notes and post-dated cheques’
circulation, in the same analogy, Marmara Credit Loops Project aims to digitalize those credits on
the blockchain while solving the problem of non-redemption of these tools.

3

The early release of this Project, named as Version 1 (Protocol 1), solves the problem of non-
redemption with 100% collateralization through trustless blockchain mechanism.

The second Protocol of the Project aims to solve the non-redemption problem based on a trust based
blockchain system with the aid of a protective layered architecture of nodes in credit loop layer
formed against defaulting.

Protocol 1 Millennium Version:
100% Collateralization Mode
Boosted Reinforcement of Purchasing Power
Issuers and Holders can earn with 3x staking while shopping with Credit Loops.

Protocol 2 Trust Based:
Zero Collateralization
Money Creation via Communities
People can create credits via their escrows in their communities.

Marmara v.1.0
100% Self-assured Credit Loops System

In Protocol 1, all credits are fully collateralized by issuers of credits. Therefore, there is no
defaulting risk. For providing this, issuers in credit loops have the right for 3x staking until maturity
dates of a credits.

Boosting Purchasing Power

Due to 100% assurance for redemption by issuers, there is no need for an escrow or aval at any
point of shopping with credit loops in Protocol 1. Holders, i.e. providers of goods and services in a
loop can benefit from 3x staking until they become endorsers by purchasing goods or services from
new holders. By this way, they become endorsers and transfer their 3x staking right to new holders.
There is no meaning for an endorser to transfer credit unless the transfer is for shopping since
he/she transfer the 3x staking power.

MCL is the only staking system in the World where locked coins allow owners staking while they
are circulating among people.

Estimation of Staking Rewards
One may estimate the staking rewards by using the formula below. Please note that the formula
gives only estimated results which may be varying with parameters such as the number and quantity
of both activated and locked-in loop coins, their aging, the internet connection, hard disk speed,
number of cores etc. However, the minimum requirement for hardware is low with 2 cores, 4 GB
RAM, SSD Harddisk and a reasonable internet connection. You can even stake with a miniPC
easily.

4

 Activated: Activated amount (in your wallet)

 Loops: Locked in loops (in your wallet)

 *TotalActivated: Total activated amount

 **Locked in Loops: Total Locked in loops amount

 30: MCL per minute

 60: Approx number of MCL blocks created per hour

 24: 24 hours

 0.75: Total staking rate

*,** : For Total Activated and Total Locked in loops amounts, visit here.

Marmara v.2.0
Trust Based Credit Loops
Escrow system and escrow services

Solution to Non-redemption in Trust Based Credit Loops
The requirement definitions have been completed for trust-based blockchain solution (Version 2)
but not yet been fully implemented on the existing blockchain. The trust-based system works
similarly to the existing trust-based analog blockchain in paper-based check checks, but with
several preventive programs (3-layer recommendation), self-assurance is provided against the
problem of non-payment (defaulting) or bouncing. In the trust-based blockchain system, the issuer
creates a credit similar to the banking system. The difference here is that the credit created in
blockchain is circulated in a credit loop, in contrast to the bank credit where the credit generally
remains as the contract between the bank and the borrower. Non-redemption problem in trust based
credit loops is solved in a unique way.

There are several layers of protection against defaulting, i.e. non-redemption. First of all, the
issuance and settlement processes of trust based credit loops will be through Escrows acting as
responsibility and trust centers. They can have additional guarantees to be used in case of no
refunds.

Issuers and endorsers in the credit loop layer will most likely have active/locked coins to be used as
a collaterals in case of defaulting. Avalists’ activated funds in community layer may also be used
collaterals.

The blockchain fund layer will also be used as a last resort against nonredemption.

Escrow System
In trust-based mode, the issuance or settlement of credit loops are performed by trusted escrow
service providers, which act as distributed notaries. Those who provide this intermediary services
are called “Escrows”. All issuer nodes in credit loops must verify their data by an escrow service to

5

https://explorer.marmara.io/stats/

join the credit loop system. The Escrow system is similar to Notarization system with more
responsibilities.

Escrow Services
Mining/staking people can easily use the system with trustless features of Marmara Credit Loops.
Data Management is only necessary for necessary people such as credit issuers and for trust based
version.

Escrows and avalists in community layer provide an additional layer of trust in the blockchain.
Currently, in the analog version of post-dated cheques, cheques are initiated by banks and banks do
not issue checks to everyone. In case of promissory notes, avalists are more important. Escrows
bear the main responsibility during issuance and settlement of peer-to-peer credits on Marmara
system.

Data association for issuers must be through escrows. Escrows may be Web-based escrow services,
Crypto Exchanges, Notaries, Post Offices, Law Offices, Credit Unions and even Banks. Not
everyone can become an Escrow. Please contact us for details if you want to be an escrow.

To ensure that there is no identity theft in version 2, user (issuer) data should be managed by only
through Escrows. This will be done by the Escrows with the their own Know Your Customer
procedures, financial credit scoring system etc. Escrows will be responsible during issuance and
settlement of trust based credit loops. Therefore, they will have earnings from blockchain fund in
third layer planned for Version 2.

Source: https://marmara.io/marmaracreditloops#marmara_version

6

https://marmara.io/marmaracreditloops#marmara_version

What is MCL? What are the Features?
MCL is a native blockchain, native cryptocurrency project inspired by the work of Post-dated
Checks and Promissory Notes. For those who don't know, let me tell you. Although the check books
for Post-dated Checks are issued by banks, it is an interest-free credit system that is an alternative to
the banking system. Tradesmen and businessmen run an alternative credit system in the economy by
issuing credit with post-dated checks while selling or purchasing goods and services.

THE PROBLEM OF BOUNCING CHECKS AND OTHER PROBLEMS
Although postdated checks and promissory notes are good instruments, their biggest problem is the
bouncing, or non-redemption. This system, which is based on trust, collapses on top of each other
with the domino effect, especially in times of economic crisis. MCL is a project developed to solve
the non-repayment problem in such credits.

MCL MAIN FEATURES
 MCL stands for Marmara Credit Loops in English.

 MCL or Marmara Coin is the first native Turkish coin based on a use case in real economy. The
good thing is that the system can be used universally anywhere in the world as an international
payment system for import and export.

 As you know, cryptocurrencies are not widely yet used in the real economy for the exchange of
goods and services. MCL, on the other hand, was developed for use in the real economy. You will
see its power when you use it.

 MCL is a project inspired by the way Post-dated Checks and promissory notes work, and its
origins date back to 2013. Based on the "Town Story" told during the Ufuk Hattı TV programmes.

 It is an Open Source and International project. It has been developed using Komodo
technologies, which is considered Blockchain of Linux, to develop software in the Blockchain
World.

 Starting from 2013, 4 workshops were held at the university with academicians and business
people from Marmara University and other universities, and after the needs were defined, software
development was carried out.

 The test chain studies of the project, which was developed in Marmara University Engineering
Faculty Open Innovation Laboratory, were carried out in 2019 and the chain started its life on
January 17, 2020 under the name of Marmara Blockchain.

 MCL is Turkey's first Open Source native cryptocurrency project to be mined/staked based on the
Proof of Work and Proof of Stake. It was designed to work on real economy.

 MCL, also known as Marmara Coin, is based on the idea that buyers and sellers earn block
rewards during shopping.

 MCL can be staked on a simple MiniPC: No energy consumption and no need for expensive
computers, as in other mining Bitcoin etc systems. It can be produced with a second hand PC, the
computer you use in your daily work, or even a mini PC you buy especially for this purpose.

7

 You can convert the MCLs you produce with Komodo, Bitcoin and other currencies on the
Decentralized Exchange AtomicDEX, and convert them into Lira for purchasing goods and services
directly on the market, trading jewelers or elsewhere.

Source: https://marmara.io/blog/marmara-chain-1/what-is-mcl-what-are-the-features-10

3x Staking Power: Up to 3x staking power on locks in credit loops

Block Reward Per Minute: The block time is 1 minute and the reward distributed per block is 30
MCL

Pre-release: 2,000,000 MCL

Annual Supply : ~ 15,778,800 MCL

INFORMATION NOTE
The simplest way to install a Marmara Chain is to install using the latest version of Marmara

Connector. Marmara Connector will check whether the Marmara Chain is installed in your system
and if not, it will perform the installation process if you give approval. If you have installed the

Marmara Chain on your operating system before installing the Marmara Connector, it will connect
and enable you to easily perform your MCL operations through the graphical interface. If you

encounter any problems during the installation process, you can get help and support from discord
or telegram.

Download and install the appropriate package for your operating system

https://github.com/marmarachain/marmara-connector/releases

8

https://github.com/marmarachain/marmara-connector/releases
https://t.me/MarmaraChain
https://marmara.io/discord
https://github.com/marmarachain/marmara-connector/releases
https://github.com/marmarachain/marmara-connector/releases
https://marmara.io/blog/marmara-chain-1/what-is-mcl-what-are-the-features-10

How Does MCL Work? How Can You Earn MCL?
HOW DOES MCL WORK?
The way MCL is working is explained in various articles. But let's explain it in a way that everyone
can understand.

MCL working logic is very simple. The shortest and most natural way to earn MCL, that is, to
produce MCL, is to use it in credit loops during shopping.

EARN WHILE SHOPPING
Let's say you are going to make a purchase as a buyer or seller by using another currency. When
you pay in advance, the transaction closes there.

If you shop with MCL with credit loops, you earn as both a buyer and a seller. For example, you
make and sell hobby products with resin. You tell the buyer that you can sell with MCL credit loop.
If the customer pays in advance, he will not gain anything. You lock the payment to the Marmara
blockchain for 100% as collateralization. You can earn MCL rewards with 3x staking power until
the credit loop maturity date. Let's say you don't want to wait until the end of the credit's maturity.
So you need cash. You will get the material for the resin. You can transfer the credit loop to the
supplier (this is called endorsement in postdated checks). Now the person who sells the resin
material along with your customer continues to earn with 3x staking rewards. You can also make
new loops with another customer.

REINFORCING PURCHASING POWER OF CONSUMERS

MCL credit loops (MCL) is a system that supports the consumer, that is, the customer, and MCL
reinforces the purchasing power of the customer. If the customer paid cash in advance, he would
gain nothing. But when he did it with the credit loop, he got a chance to participate in 3x staking
rewards. A useful system also for the seller; because you are now a manufacturer with high
purchasing power customers. You can sell goods or services more easily.

When you decide to make a purchase in installments using the MCL credit loops method, the buyer
(issuer) locks the money on the Marmara Blockchain with the terms and installments agreed
between both the buyer and the seller, instead of making a cash payment. For each credit loop until
the end of the maturity, both the buyer and the seller get a chance to find block rewards on the
Marmara Blockchain with 3x staking power. You may have heard of Bitcoin mining. In fact, they
earn a reward, namely Bitcoin, by performing a kind of notary public service. They need energy and
expensive computing power to earn Bitcoin rewards. To earn the MCL Award, the buyer and seller
need to make credit loops during shopping.

Therefore, MCL, Marmara Credit Loops, is a universal system as the first and only DeFi in the
World designed to run in real economy to use during shopping. By using MCL Credit loops during
shopping, both buyer, buyer and seller earn MCL Coin rewards.

Source: https://marmara.io/blog/marmara-chain-1/how-does-mcl-work-how-can-you-earn-mcl-9?
anim=

9

https://marmara.io/blog/marmara-chain-1/how-does-mcl-work-how-can-you-earn-mcl-9?anim
https://marmara.io/blog/marmara-chain-1/how-does-mcl-work-how-can-you-earn-mcl-9?anim

Easy Installation of Marmara Blockchain and MCL Coin
Production with Marmara Connector

Marmara Connector is an application developed for everyone to easily set up the Marmara
Blockchain and start generating MCL coins.

WHAT IS MARMARA BLOCKCHAIN AND MCL?
Marmara Blockchain is a project inspired by credit instruments such as Forward Checks and
Promissory Notes, which are produced within the shopping base. On the Marmara Blockchain, you
can safely issue (discover) and circulate (turnover) all types of loans without problems such as
dishonesty, forgery, indivisibility, and untraceability. Since MCL is a system developed for use in
real economy, you can generate MCL while shopping.

Marmara Blockchain is a free blockchain and has its own coin called MCL. MCL on the Marmara
Blockchain is not a token but a decentralized coin. The requirements are modest due to Marmara
Energy and its processor-free 75% Proof-of-Stake algorithm (PoS). Therefore, Marmara Blockchain
can be installed on an ordinary laptop, PC or even miniPC today and MCL coins can be generated
on it.

Since MCL is a coin, it works as a kind of notary system. You can earn rewards by being a notary
public on the Marmara blockchain. Approximately every minute, a block is issued and 30 MCLs as
a block reward are distributed against notary public. You can earn block rewards by keeping your
computer open by making credit cycles or locking it in active and keeping records. If you lock MCL
in credit cycles to get the reward, you will have the chance to find the maximum reward with 3x
staking. Credit Cycles can be used during shopping by endorsement (by transferring to another
seller) within the shopping.

REQUIREMENTS TO INSTALL MARMARA BLOCKCHAIN
The requirements for setting up a Marmara Blockchain are very low. It is sufficient to have the
following features:
 64 Bit Operating System
 8 GB of RAM
 Minimum 4 Cores CPU (Min. 6 cores recommended)
 SSD 100GB

WHAT IS MARMARA CONNECTOR?
Marmara Connector is an application developed for everyone to easily set up the Marmara
Blockchain and start producing MCLs. Since it is necessary to install the blockchain to earn the
MCL reward, the blockchain should be easily set up by anyone. That's why Marmara Connector
was developed for this purpose.

Marmara Connector is very simple to install and use. It can be run on Windows and Linux
Operating System locally on your machine or by installing it on a remote server.

MARMARA CONNECTOR INSTALLATION
Marmara Connector Installation is very simple.

 Download and install the latest Marmara Connector Application from Marmara Chain Github
Page. Installing the Marmara Connector itself is that simple.

10

https://github.com/marmarachain/marmara-connector/releases
https://github.com/marmarachain
https://github.com/marmarachain

 See Releases · marmarachain/marmara-connector · GitHub

WHAT DOES MARMARA CONNECTOR DO?
 Marmara Connector allows you to easily set up the Marmara Blockchain required for your
notary public.
 It allows you to make all kinds of transactions related to credit cycles while shopping.
 It performs all other necessary transactions on Marmara Blockchain, transactions related to MCL
coin wallet, and information functions.

The following are the operations that can be performed on the Connector when it is installed.

You can watch the video on the following link about Marmara Blockchain Installation Using
Marmara Connector:
https://youtu.be/irb4y3iOsp8

BLOCKCHAIN SYNCHRONIZATION
Blockchain is a distributed notary public and unlike central database systems where the record is
kept in only one place, each node (notary) keeps the same data. For this, he is entitled to a prize.
Therefore, it is thousands of times safer where records are kept in a central location (eg banks etc.).
You cannot perform notary transactions etc. on the chain without keeping all historical database
records. Below are the synchronization procedures.

https://youtu.be/n0TG93mXjBk

POSSIBLE PROBLEMS DURING INSTALLATION OF MARMARA CONNECTOR
Marmara Connector does 3 things.
1. It downloads the necessary files to run the Marmara Blockchain. You must have the curl program
installed to download it. If it is not installed on some Windows systems, it must be installed
manually.

11

https://youtu.be/n0TG93mXjBk
https://youtu.be/irb4y3iOsp8
https://github.com/marmarachain/marmara-connector/releases

2.For Marmara Blockchain transactions, the following program files related to Marmara should be
available under the C:\Users\user\AppData\Roaming\ZcashParams directory. Note: Pay attention to
the files as below and their lengths.

3. The programs required for all transactions related to Marmara Blockchain should be downloaded
under the C:\Users\user\marmara folder as follows. Note: Pay attention to the files as below and
their lengths. In the new version, there will be marmara-cli and marmarad files instead of komodo-
cli and komodod files.

4. All data of historical blockchain records. The safest way to do this is to wait for it to be
downloaded live. When you start the chain after installing it, it will be downloaded automatically in
Marmara Connector. When all data is downloaded, it is said to be synchronous. You can sync
quickly by downloading the daily updated Bootstrap file here for a quick download. Marmara
Connector does this in itself. Bootstrap file should be opened under MCL folder in C:\Users\user\
AppData\Roaming\Komodo\MCL directory. After stopping the synchronous chain, you can use the
backup of the two folders when the chain data is corrupted.

Bootstrap backup is taken daily in https://explorer2.marmara.io/bootstrap

Alternative link :
https://eu.bootstrap.dexstats.info/MCL-bootstrap.tar.gz

Note for Bootstrap: Bootstrap only has the blocks and chainstate folder. Two is enough. After
stopping the chain delete all existing folders except wallet.dat. Then open the two folders. You don't
even need to download bootstrap. From time to time, stop the synchronized chain and back up the
blocks and chainstate folders. Here are your own Bootstrap files.

12

https://eu.bootstrap.dexstats.info/MCL-bootstrap.tar.gz
https://explorer2.marmara.io/bootstrap
https://explorer2.marmara.io/bootstrap

You can get information from the following sources:
Marmara Website: https://marmara.io
Marmara Discord Group: https://marmara.io/discord
Twitter Marmara: https://twitter.com/marmarachain
Marmara Credit Loops Youtube Channel: https://www.youtube.com/channel/UC_Ym-
tICCd7ATlBU_1ToEKw/videos

Sources:

• https://marmarachain-mcl.medium.com/marmara-connector-ile-marmara-blokzincirinin-
kolay-kurulumu-ve-mcl-koin-%C3%BCretimi-1a1e56fadfa7

• https://marmara.io/disco rd

13

https://marmara.io/discord
https://marmara.io/discord
https://marmarachain-mcl.medium.com/marmara-connector-ile-marmara-blokzincirinin-kolay-kurulumu-ve-mcl-koin-%C3%BCretimi-1a1e56fadfa7
https://marmarachain-mcl.medium.com/marmara-connector-ile-marmara-blokzincirinin-kolay-kurulumu-ve-mcl-koin-%C3%BCretimi-1a1e56fadfa7
https://marmarachain-mcl.medium.com/marmara-connector-ile-marmara-blokzincirinin-kolay-kurulumu-ve-mcl-koin-%C3%BCretimi-1a1e56fadfa7
https://www.youtube.com/channel/UC_Ym-tICCd7ATlBU_1ToEKw/videos
https://www.youtube.com/channel/UC_Ym-tICCd7ATlBU_1ToEKw/videos
https://twitter.com/marmarachain
https://marmara.io/discord
https://marmara.io/

Build Marmara from Source
The basic Komodo software package includes two applications.

marmarad
The marmarad software application is the Smart Chain daemon that powers all Komodo
blockchains.

marmara-cli
The marmara-cli software application allows a developer to execute API calls to marmarad via the
command line.

Both are Installed Automatically
Both of these software applications are installed in the ~/komodo/src/ directory as a part of any of
the following installation procedures.

Building Marmara Credit Loops Smart Chain From Source

One may also build Marmara Credit Loops Smart Chain from source. This is not required, however
building from source is considered as the best practice in a production environment, since this
allows one to instantly update to the latest patches and upgrades.

Linux
Requirements

• Linux (easiest with a Debian-based distribution, such as Ubuntu)
 For Ubuntu, we recommend using the Ubuntu 20.04, 22.04 or 24.04 LTS releases

• 64-bit Processor

• Minimum 4 Cores CPU (Min. 6 Cores CPU recommended)

• Minimum 8 GB of free RAM

Get Started
Verify that your system is up to date.
sudo apt-get update
sudo apt-get upgrade -y

Install the dependency packages
sudo apt-get install build-essential pkg-config libc6-dev m4 g++-multilib autoconf libtool ncurses-
dev unzip git python python3-zmq zlib1g-dev wget curl bsdmainutils automake cmake clang ntp
ntpdate nano -y
This action takes some time, depending on your Internet connection. Let the process run in the
background. Once completed, follow the steps below to install Marmara Credit Loops smart chain.

Clone the Marmara Credit Loops Repository
cd ~

14

git clone https://github.com/marmarachain/marmara --branch master --single-branch

 Skip the following steps and jump to Fetch the Zcash Parameters step if the system you
are using has 8 GB or more RAM.

Changing swap size to 4 GB

Swap is a space on a disk which is used when the amount of physical RAM memory is full. If the
system has 4 GB of RAM, to avoid cases of running out of RAM, swap space needs to be
configured.

 Check if OS already has swap enabled using sudo swapon --show . If
swapfile exists and is not configured as at least 4 GB then turn off the swap
before configuring it by sudo swapoff /swapfile

Execute the following commands to allocate 4 GB of RAM for the swap space.
sudo fallocate -l 4G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile

Fetch the Zcash Parameters
cd marmara
./zcutil/fetch-params.sh
./zcutil/build.sh -j$(nproc)
Once this step is complete, you will find the marmarad & marmara-cli files in the src directory.

The following steps are optional to follow.

Setting up Swappiness

Swappiness is the kernel parameter that defines how much (and how often) Linux kernel copies
RAM contents to swap. The following sets up the parameter's value as “10”. Note that the higher
the value of the swappiness parameter, the more aggressively Linux's kernel will swap.

sudo sysctl vm.swappiness=10

 This setting will persist until the next reboot. We can set this value
automatically at restart by adding the line to our /etc/sysctl.conf file: sudo
nano /etc/sysctl.conf vm.swappiness=10

Enabling UFW
This step is not required for installing MCL but can be used for server security purposes.

• Check the status of UFW by

sudo ufw status

15

• UFW package can be installed by executing the following command

sudo apt install ufw

• Activate UFW and allow connections by executing the following commands

echo y | sudo ufw enable
sudo ufw allow ssh
sudo ufw allow "OpenSSH"
sudo ufw allow 33824
sudo ufw allow out 33824

MacOS
Requirements

• OSX (version > 10.11)
• Minimum 4GB of free RAM (8GB+ recommended)

Ensure Command Line Tools are Installed

Issue the following command in a terminal.

xcode-select –install

Ensure brew is Installed
We use the software brew to install dependencies. If you have the latest version of brew installed
already, you may skip this step.
usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew install/master/install)"

Use brew to Install Dependencies
Execute each command separately
brew update
brew upgrade
brew tap discoteq/discoteq; brew install flock
brew install autoconf autogen automake
brew install gcc@8
brew install binutils
brew install protobuf
brew install coreutils
brew install wget

Clone the Marmara Credit Loops Repository
cd ~
git clone https://github.com/marmarachain/marmara --branch master --single-branch

16

Fetch the Zcash Parameters
cd marmara
./zcutil/fetch-params.sh
./zcutil/build-mac.sh -j8
Once this step is complete, you will find the marmarad & marmara-cli files in the src directory.
Having completed these, launch the Marmara Chain by following the instructions in here.

Windows
The Windows software cannot be directly compiled on a Windows machine.

Rather, the software must be compiled on a Linux machine (Ubuntu recommended), and the
respective output .exe must then be carried to the Windows machine.

Requirements
• Linux machine or Virtual Machine-based installation of Ubuntu Linux
• Linux Requirements in here.

Install the dependency packages
sudo apt-get install build-essential pkg-config libc6-dev m4 g++-multilib autoconf libtool ncurses-
dev unzip git python python-zmq zlib1g-dev wget libcurl4-gnutls-dev bsdmainutils automake curl
libsodium-dev cmake mingw-w64

Install Rust
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env
rustup target add x86_64-pc-windows-gnu

Configure The Compiler to Use POSIX Thread Model

Execute the following command:
sudo update-alternatives --config x86_64-w64-mingw32-gcc

After having issued the above command, select the POSIX option as indicated below:
Selection Path Priority Status
--
 0 /usr/bin/x86_64-w64-mingw32-gcc-win32 60 auto mode
 1 /usr/bin/x86_64-w64-mingw32-gcc-posix 30 manual mode
* 2 /usr/bin/x86_64-w64-mingw32-gcc-win32 60 manual mode

Press <enter> to keep the current choice[*], or type selection number: 1

Issue the following command:
sudo update-alternatives --config x86_64-w64-mingw32-g++

Having executing the above command, select the POSIX option as below:

17

https://github.com/marmarachain/marmara/wiki/Marmara-Credit-Loops

There are 2 choices for the alternative x86_64-w64-mingw32-g++ (providing /usr/bin/x86_64-
w64-mingw32-g++)

 Selection Path Priority Status

 0 /usr/bin/x86_64-w64-mingw32-g++-win32 60 auto mode
 1 /usr/bin/x86_64-w64-mingw32-g++-posix 30 manual mode
* 2 /usr/bin/x86_64-w64-mingw32-g++-win32 60 manual mode

Press <enter> to keep the current choice[*], or type selection number: 1

Clone The Marmara Repository
git clone https://github.com/marmarachain/marmara --branch master --single-branch
cd marmara

Fetch the Zcash Parameters
./zcutil/fetch-params.sh
./zcutil/build-win.sh -j$(nproc)

Once this step is completed, you will find marmarad.exe & marmara-cli.exe files inside the src
directory.

Copy and move these files to the Windows machine. Continue from here:
https://github.com/marmarachain/marmara/wiki/Install-Marmara-from-Precompiled-
Binaries#windows

18

https://github.com/marmarachain/marmara/wiki/Install-Marmara-from-Precompiled-Binaries#windows
https://github.com/marmarachain/marmara/wiki/Install-Marmara-from-Precompiled-Binaries#windows

Getting Started with Marmara
How to get started with Marmara?
The basic Marmara software package includes two applications.

marmarad
The marmarad software application is the Smart Chain daemon that powers all Marmara
blockchains.

marmara-cli
The marmara-cli software application allows a developer to execute API calls to marmarad via the
command line.

MacOS
Find the directory where marmarad and marmara-cli are located. Open the command prompt and
change to that directory.

Using marmara-cli and getinfo
To see general information about MCL Smart chain, execute the getinfo command below:
./marmara-cli -ac_name=MCL getinfo

When the returned properties of blocks and longestchain are equal to each other, the daemon is
finished syncing with the network.

One can interact with the MARMARA blockchain in MacOS by issuing the MARMARA
commands as in Linux OS.

Windows
Find the directory where marmarad.exe and marmara-cli.exe are located. Open the command
prompt and change to that directory.

For instance, given that the respective files are located in Desktop under MCL folder; the command
should be like below:
cd Desktop\MCL\

Using marmara-cli and getinfo

An example is given for getinfo command below:
marmara-cli -ac_name=MCL getinfo

Linux
If you have downloaded and build MCL from source then you can run the commands under
komodo/src directory. According to your configuration, marmarad and marmara-cli may be under
different directories. Hence, find where they are and change directory accordingly.

Launch the Marmara Chain with the following parameters:
./marmarad &
Wait until it connects and synchronizes. You may check if the node synchronized to the chain by

19

executing the following:
./marmara-cli -ac_name=MCL getinfo

Indexing (Optional step for fastening up the process of downloading all the blocks)**

Newcomers need to wait for all the blocks to be downloaded to their machine. To fasten up this
process, bootstrap may be downloaded and used.

Stop the Marmara blockchain by executing the following command:

Linux:
./marmara-cli -ac_name=MCL stop

Windows:
marmara-cli.exe -ac_name=MCL stop

To install bootstrap from the command line, execute the following command:

Linux:
wget https://eu.bootstrap.dexstats.info/MCL-bootstrap.tar.gz

Now, in the following command, tar will extract the bootstrap contents in a specific directory as
shown below:
tar -xvf MCL-bootstrap.tar.gz -C .komodo/MCL

Now, relaunch the Marmara Chain by using the following command:

Linux:
./marmarad &

Windows:
marmarad.exe &

** Using Bootstrap is not a recommended approach to download the blocks since the bootstrap file
may be distorted. The recommended approach is to index the blockchain from the start.**

Creating A Pubkey and Launching MCL with pubkey

To use Marmara Credit Loops, a user must have a pubkey and launch the chain with a pubkey.
Otherwise, any mining or staking in the smart chain would be in vain. Since all mined or staked
coins will also be sent to this address.

In order to get a pubkey, launch the Marmara Chain with the normal launch parameters and execute
the getnewaddress API command:

Linux:

20

https://developers.komodoplatform.com/basic-docs/smart-chains/smart-chain-api/wallet.html#getnewaddress
https://eu.bootstrap.dexstats.info/MCL-bootstrap.tar.gz

./marmara-cli -ac_name=MCL getnewaddress

Windows:
marmara-cli.exe -ac_name=MCL getnewaddress

getnewaddress command will in turn return a new address:
DO_NOT_USE_THIS_ADDRESSgg5jonaes1J5L786

Now, execute the validateaddress command.

Linux:
./marmara-cli -ac_name=MCL validateaddress
DO_NOT_USE_THIS_ADDRESSgg5jonaes1J5L786

Windows:
marmara-cli.exe -ac_name=MCL validateaddress
DO_NOT_USE_THIS_ADDRESSgg5jonaes1J5L786
This will return a json object with many properties. In the properties one can see:
"pubkey": "DO_NOT_USE_THIS_ADDRESS019n79b0921a1be6d3ca"
This will be your MCL pubkey, make sure to note it. You must now indicate it to the daemon. In
order do this, first stop the daemon using the following command:

Linux:
./marmara-cli -ac_name=MCL stop

Windows:
marmara-cli.exe -ac_name=MCL stop

Launching MCL with pubkey
Relaunch your daemon using the required parameters, and make sure to include your pubkey as an
additional parameter. For example:

Linux:
./marmarad -pubkey=DO_NOT_USE_THIS_ADDRESS019n79b0921a1be6d3ca &

Windows:
marmarad.exe -pubkey=DO_NOT_USE_THIS_ADDRESS019n79b0921a1be6d3ca &

 -genproclimit sets the number of threads to be used for mining.

 If the parameter -genproclimit is set to 1 such as -gen -genproclimit=1
launches the Marmara Chain with single (1) CPU. Note that you can set this
to any number of cores such as 3.

If the parameter -genproclimit is set to -1 such as -gen -genproclimit=-1

21

launches the Marmara Chain with the whole CPU.

If the parameter -genproclimit is set to 0 such as -gen -genproclimit=0
launches the Marmara Chain with Staking mode on and stakes on the
Activated coin.

dumpprivkey

The dumpprivkey method reveals the private key corresponding to the indicated address. The
command for this is given below for demo purposes.

Linux:
./marmara-cli -ac_name=MCL dumpprivkey "PWqwYaWNEVT7V9SdfFHARWnoB7vcpSfdvs"

Windows:
marmara-cli.exe -ac_name=MCL dumpprivkey
"PWqwYaWNEVT7V9SdfFHARWnoB7vcpSfdvs"

The response of the command gives the private address as in the example below:
DONOTUSETHISxxxxxxxxxxxxxxxxx7KkCmRnnSg7iXvRUqhYoxC9Y

importprivkey
The importprivkey method adds a private key (as returned by dumpprivkey) to your wallet. The
command may take several arguments as described in here. The simplest form of command for this
is given below for demo purposes.

Linux:
./marmara-cli -ac_name=MCL importprivkey
"DONOTUSETHISxxxxxxxxxxxxxxxxx7KkCmRnnSg7iXvRUqhYoxC9Y"

Windows:
marmara-cli.exe -ac_name=MCL importprivkey
"DONOTUSETHISxxxxxxxxxxxxxxxxx7KkCmRnnSg7iXvRUqhYoxC9Y"

The response of the command gives the wallet address as in the demo response below:
R9z796AehK5b6NCPeVkGUHSpJnawerf8oP

Now, the wallet address can be validated through validateaddress to get the MCL pubkey:

Linux:
./marmara-cli -ac_name=MCL validateaddress R9z796AehK5b6NCPeVkGUHSpJnawerf8oP
Windows:
marmara-cli.exe -ac_name=MCL validateaddress R9z796AehK5b6NCPeVkGUHSpJnawerf8oP

After getting the respective MCL pubkey from the response of the command above, relaunch the
Marmara Chain with that pubkey as in here .

22

https://github.com/marmarachain/marmara/wiki/Getting-Started-with-Marmara#launching-mcl-with-pubkey
https://developers.komodoplatform.com/basic-docs/smart-chains/smart-chain-api/wallet.html#importprivkey

Creating a Wallet Address from One's own Words in Marmara Blockchain

For Linux OS; as previously explained, one can make use of the command ./marmara-cli -
ac_name=MCL getnewaddress in order to get a wallet address and then use the command
./marmara-cli -ac_name=MCL validateaddress "Rwalletno" to get the respective Privkey.

However, the Privkey received in this way consists of a hard to remember combination of letters
and number. Note that keeping this privkey safe and secure and reachable only by you is very
important and essential way to reach your assets. Hence, one can generate a privkey from his/her
own set of words and keep a record of these words to generate the respective privkey whenerever
needed.

For this purpose, create a set of 12 seed words that have no special characters in them. For instance:
"can create your own keywords and generate privkey from these whenever needed".

Then use the following command to get the respective privkey generated:

Linux:
./marmara-cli -ac_name=MCL convertpassphrase "can create your own keywords and generate
privkey from these whenever needed"

Windows:
marmara-cli.exe -ac_name=MCL convertpassphrase "can create your own keywords and generate
privkey from these whenever needed"

The command in turn returns the following JSON Object:
{
 "agamapassphrase": "can create your own keywords and generate privkey from these whenever
needed",
 "address": "RCna416S62uNVAKMwRuFtmRH2X3xJuTidD",
 "pubkey": "03a3c416d3bafe44448dcb3a56e5dd13db5cc3e6992051a61a2f5675b4796c0d7a",
 "privkey": "9005f5b2593ab3e662e1330ceca848d62fb2021165c6484ac7037cb4efc5317e",
 "wif": "UtqWJyhXjJWYigKyKCm5ML96LvSZFDfZrT2HYXAdGs8byZ3uCMzy"
}
Later, one can use importprivkey method to add the respective private key to the wallet address:

Linux:
./marmara-cli -ac_name=MCL importprivkey
"UtqWJyhXjJWYigKyKCm5ML96LvSZFDfZrT2HYXAdGs8byZ3uCMzy"

Windows:
marmara-cli.exe -ac_name=MCL importprivkey
"UtqWJyhXjJWYigKyKCm5ML96LvSZFDfZrT2HYXAdGs8byZ3uCMzy"
Now, the owner of the assets needs to keep a record of the keyword combination safely to generate
the respective privkey whenever needed. Remember that private keys should always be kept secret
and so are the keywords!

23

Taking Backup of Wallet
Backing up the wallet.dat file is very essential as it holds the assets of one.

Linux

On a Linux machine, the file could be found in: ~/.komodo/MCL/wallet.dat

One method to backup this file is to archive a copy of the file.
#Copy the wallet.dat file
cp -av ~/.komodo/MCL/wallet.dat ~/wallet.dat

#Rename the wallet.dat file
mv ~/wallet.dat ~/2020-08-09-wallet_backup.dat

Make an archieve of the wallet.dat file
tar -czvf ~/2020-08-09-wallet_backup.dat.tgz ~/2020-08-09-wallet_backup.dat

Move the final file to a secure location

Checking the Staking/Mining mode of your node in Marmara Chain
The following command helps to check the mode of the node:

Linux:
./marmara-cli -ac_name=MCL getgenerate

Windows:
marmara-cli.exe -ac_name=MCL getgenerate

Once the command given above is executed, the following JSON object gets returned:
{
 "staking": false,
 "generate": true,
 "numthreads": 1
}

From above, it can be seen that the node is in the mining node.

 "staking": false means that staking is off.

 "generate": true means that mining is active.

 "numthreads": 1 refers to the number of cores used for mining. In this
case, this parameter was set to one earlier.

 To change mode of the node to staking, execute the command below:
Linux:
./marmara-cli -ac_name=MCL setgenerate true 0

24

Windows:
marmara-cli.exe -ac_name=MCL setgenerate true 0

Now checking the status of the node:

Linux:
./marmara-cli -ac_name=MCL getgenerate

Windows:
marmara-cli.exe -ac_name=MCL getgenerate

This command returns a JSON object:
{
 "staking": true,
 "generate": false,
 "numthreads": 0
}

 Note that "staking": true will not be of use if you have no activated coins!

Sending Coins to an Address
One may directly send a payment to a given address by issuing the following command. The
payment is made based on the Normal Amount available on the respective wallet. The amount is
rounded to the nearest 0.00000001. A transaction fee is deducted for the transaction being made
from one's Normal Amount.

Linux:
./marmara-cli -ac_name=MCL sendtoaddress "MCL_address" amount

Windows:
marmara-cli.exe -ac_name=MCL sendtoaddress "MCL_address" amount

Note: This command directly sends payment to the specified address and
should be used carefully. As, the payment sent through this method cannot
be redeemed later.

Reaching Details about Node and Wallet in Marmara Chain

The following commands are useful for getting details about your node and wallet.

• getinfo

Linux:
./marmara-cli -ac_name=MCL getinfo

25

Windows:
marmara-cli.exe -ac_name=MCL getinfo

A typical result is given below. Note that the synced status is false:
{
 "version": 3000300,
 "protocolversion": 170009,
 "KMDversion": "0.5.3",
 "synced": false,
 "notarized": 0,
 "prevMoMheight": 0,
 "notarizedhash":
"00",
 "notarizedtxid":
"00",
 "notarizedtxid_height": "mempool",
 "KMDnotarized_height": 0,
 "notarized_confirms": 0,
 "walletversion": 60000,
 "balance": 0.00000000,
 "blocks": 72200,
 "longestchain": 586375,
 "tiptime": 1583613252,
 "difficulty": 38227.25456170298,
 "keypoololdest": 1614160564,
 "keypoolsize": 101,
 "paytxfee": 0.00000000,
 "sapling": 61,
 "timeoffset": 0,
 "connections": 16,
 "proxy": "",
 "testnet": false,
 "relayfee": 0.00000100,
 "errors": "",
 "CCid": 2,
 "name": "MCL",
 "p2pport": 33824,
 "rpcport": 33825,
 "magic": -1687041972,
 "premine": 2000000,
 "reward": "3000000000",
 "halving": "0",
 "decay": "0",
 "endsubsidy": "0",
 "notarypay": "0",
 "staked": 75
}

26

getinfo command returns important details such as the version of MARMARA through "version";
synchronization status of your node through synced (this parameter's value is true if the parameters
"blocks" and "longestchain" are equal); difficulty of the chain through "difficulty"; number of
nearest connected nodes to the chain through "connections"; the pubkey with which you are
connected to the chain through "pubkey":

• getpeerinfo

getpeerinfo command returns detailed information on nearest connected nodes to the chain around
your node.

Linux:
./marmara-cli -ac_name=MCL getpeerinfo

Windows:
marmara-cli.exe -ac_name=MCL getpeerinfo

• marmarainfo

Linux:
./marmara-cli -ac_name=MCL marmarainfo 0 0 0 0 pubkey

Windows:
marmara-cli.exe -ac_name=MCL marmarainfo 0 0 0 0 pubkey

marmarainfo command returns important details such as the normal amount in the pubkey through
"myPubkeyNormalAmount"; the activated amount through "myActivatedAmount"; the details of
credit loops made through "Loops"; the total amount locked in credit loops through
"TotalLockedInLoop"; the number of credit loops closed through "numclosed"; and the details of
credit loops closed through "closed".

Activating and Deactivating Coins

• marmaralock

marmaralock is used to activate the coins. Active coins are needed for staking and if there
are none then even if the staking mode is on, no blocks would be found through staking. The entire
command is given below and the amount is to be replaced by the amount of coins such as 1000.

Linux:
./marmara-cli -ac_name=MCL marmaralock amount

Windows:
marmara-cli.exe -ac_name=MCL marmaralock amount

27

This command in turn returns a JSON object with the result of the operation and the hex created for
it. Note that the "hex" given below is for demonstration purposes.

{
 "result": "success",
 "hex":
"0400008085202f89020039b219200ae4b5c83d77bffce7a8af054d6fb..........e9181f6aac3e1beb1e26
0e9a1f49ed24e6ac00000000edeb04000000000000000000000000"
}

Now, in order to confirm this transaction, copy the hex returned through the JSON object and
validate it through the sendrawtrasaction command given below:

Linux:
./marmara-cli -ac_name=MCL sendrawtransaction
0400008085202f89020039b219200ae4b5c83d77bffce7a8af054d6fb..........e9181f6aac3e1beb1e26
0e9a1f49ed24e6ac00000000edeb04000000000000000000000000

Windows:
marmara-cli.exe -ac_name=MCL sendrawtransaction
0400008085202f89020039b219200ae4b5c83d77bffce7a8af054d6fb..........e9181f6aac3e1beb1e26
0e9a1f49ed24e6ac00000000edeb04000000000000000000000000

If the above command gets successfully executed in the blockchain, it gives out a transaction id in
response. One may check if this transaction is verified by searching the respective id in the
Marmara Explorer site. To see the activated coins, use marmarainfo command provided earlier and
search for the value across the "myActivatedAmount" parameter. Note that the raw transactions are
collected in the mempool and a few blocks may be needed to found to see the transaction recorded
on the block.

 marmaraunlock is used deactivate the coins i.e. turn them into normal amount. Normal Amount is
utilized for sending payments directly to an address through sendtoaddress command explained
earlier. The amount is to be replaced by the amount of coins to be deactivated such as 500.

Linux:
./marmara-cli -ac_name=MCL marmaraunlock amount

Windows:
marmara-cli.exe -ac_name=MCL marmaraunlock amount

In the same way explained earlier, this transaction needs to be validated through the
sendrawtrasaction command given above. For this purpose, copy the hex returned by
marmaraunlock command and use it with sendrawtrasaction command.

• listaddressgroupings
listaddressgroupings is used to list the pairs of wallet addresses and respective normal amounts in
them. The usage is given in the command below.

28

http://explorer.marmara.io/

Linux:
./marmara-cli -ac_name=MCL listaddressgroupings

Windows:
marmara-cli.exe -ac_name=MCL listaddressgroupings

• Marmaraamountstat

This command is used to get all the activated, normal and locked in loop amount of the Marmara
blockchain irrespective of the owner. If the begin_height and end_height inputs are set to zero(0), it
gets the entire set of data from blocks.

Linux:
./marmara-cli -ac_name=MCL marmaraamountstat begin_height end_height

Windows:
marmara-cli.exe -ac_name=MCL marmaraamountstat begin_height end_height

Example for Linux OS:
./marmara-cli -ac_name=MCL marmaraamountstat 50000 60000

Sample Result:
{

 "result": "success",

 "BeginHeight": 50000,

 "EndHeight": 60000,

 "TotalNormals": 166854.85464948,

 "TotalPayToScriptHash": 0.00000000,

 "TotalActivated": 582681.11953150,

 "TotalLockedInLoops": 237510.00000000,

 "TotalUnknownCC": 0.02820000,

 "SpentNormals": 161377.88109325,

 "SpentPayToScriptHash": 0.00000000,

 "SpentActivated": 382128.12128773,

 "SpentLockedInLoops": 143510.00000000,

 "SpentUnknownCC": 0.00000000

}

help

This command is used to get all the methods related to the Marmara smart chain.

29

Linux:
./marmara-cli -ac_name=MCL help

Windows:
marmara-cli.exe -ac_name=MCL help

One can also check out a specific method's parameters by issuing the following command with the
method name mentioned: For example:

Linux:
./marmara-cli -ac_name=MCL help getinfo

Windows:
marmara-cli.exe -ac_name=MCL marmaraamountstat

Source: https://github.com/marmarachain/marmara/wiki/Getting-Started-with-Marmara

References
For more detailed information on Komodo Antara Framework and its details, please refer to its
extended developer documentation.
https://developers.komodoplatform.com/

30

https://developers.komodoplatform.com/
https://github.com/marmarachain/marmara/wiki/Getting-Started-with-Marmara

How to make Marmara Credit Loops
The current Marmara Credit loops currently work based on Protocol 1 which is in 100%
collateralization mode. 100 % collateralization is made by issuer on behalf of both himself/herself
and holder. Both issuer and holder have the 3x staking chance to get blockchain rewards. Issuer has
the 3x staking chance until maturity date of credit whereas holder has the 3x staking chance until
he/she endorses/transfers the credit to a new holder who will continue staking with the issuer. The
Credit loops can be made using only activated coins.

Terminology

Issuer: The person who first creates a credit in a credit loop. It is the person who forms the first
node in the credit loop. The credit may be collateralized 100% or with even zero-collateralization
until maturity date of a credit.

Bearer (Holder): The last node in a credit loop is always called bearer (holder). When someone
transfers a credit in a loop, that node becomes immediately an endorser.

Endorser: All other nodes that fall between the issuer, which is the first node in the credit loop, and
the last node, and transfer the credit to the next node.

Maturity: The time a credit expires. It is measured as blocks in estimation. The block per day is
1440 (60 blocks an hour times 24 hours a day). Suppose a credit is for 100 days, the maturity is
1440x100, i.e. 144,000 blocks.

Settlement: When a credit matures, settlement is made to the holder, the last node in a loop.
Settlement may be automatic or manual.

Escrow: Trust based parties for Protocol 2. If EscrowOn is false, then 100% collateralization is
used and settlement is automatic. There is no need for escrows in protocol 1 which works as
complete trustless version.

Avalist: Avalists support issuer or endorsers with MCL as additional colletarization and can earn
with 3x staking with those support. In case of non-redemption, their funds are utilized. Avalists are
available only in Protocol 2. The parameter avalcount is always zero for protocol 1.

BlockageAmount: This is a term for protocol 2. An issuer may be asked to put some
collateralization by a holder. In that case, the issuer gets benefit of 3x staking in protocol 2.

Dispute Expiry: It is grace period for solving non-redemption problem in credit loops in protocol
2. An issuer may have this time as blocks when creating a credit under protocol 2 without or
insufficient collateralization. Before this period expires, an escrow should do all actions according
to aggrement with the issuer to solve non-redemption. Otherwise, the escrow is penalized in the
system.

Important Commands for Making Credit Loops

• marmarareceive

This command is used to get a credit from an issuer or an endorser. When asking a credit from an

31

issuer, i.e. the first node, it has a unique use. In other nodes, it is the same.

Scenario 1: Two nodes are making a credit loop for the first time. This credit loop may be created
for a sale of a good or service in the market. In such case, the holder (the one selling the
product/service) should request for a credit from the issuer (the one paying the product/service) by
writing down the following command:

Linux:
./marmara-cli -ac_name=MCL marmarareceive senderpk amount currency matures
'{"avalcount":"n"}'

Windows:
marmara-cli.exe -ac_name=MCL marmarareceive senderpk amount currency matures
{\"avalcount\":\"n\"}

 senderpk is the pubkey address of the issuer (the one paying the
product/service)

 amount is the payment amount. Please note that this amount should be
available in activated fund of the issuer and if not then must be activated
thru marmaralock command by th issuer.

 currency is MARMARA

 matures is the time that respective credit expires, 60 blocks an hour times
24 hours a day making 1440 blocks per day.

 '{"avalcount":"n"}' is the number of avalists i.e. '{"avalcount":"0"}' for
protocol 1. Replace n with 0 for Protocol 1.

This marmarareceive call generates a hex code. This HEXCODE needs to be verified by the holder
by executing the sendrawtransaction command:
Linux:
./marmara-cli -ac_name=MCL sendrawtransaction HEXCODE
Windows:
marmara-cli.exe -ac_name=MCL sendrawtransaction HEXCODE

Once this command is executed, a transaction id named txid gets generated. This txid along
with the receiverpk needs to be communicated to the issuer to complete the credit loop. But, an
alternative to this communication would be the use of marmarareceivelist method which could be
used to see the receive requests made to the issuer himself/herself.

marmarareceivelist method would be executed by the issuer by the following command:
Linux:
./marmara-cli -ac_name=MCL marmarareceivelist pubkey maxage

32

Windows:
marmara-cli.exe -ac_name=MCL marmarareceivelist pubkey maxage

 pubkey is the pubkey address of the issuer connected to the Marmara
Chain and the maxage by default is 24x60 The response of this command is
a list of pair of txid's created by the respective pubkeys for a given max age.

• marmaraissue

This command is only used by issuer, the first node to create/issue a credit. By this, a credit is also
transferred to the first holder, i.e. the second node. Many of the parameters for a credit loop is
decided between the issuer and the first holder. marmaraissue method takes in the following
arguments:
Linux:
./marmara-cli -ac_name=MCL marmaraissue receiverpk '{"avalcount":"n",
"autosettlement":"true"|"false", "autoinsurance":"true"|"false", "disputeexpires":"offset",
"EscrowOn":"true"|"false", "BlockageAmount":"amount" }' requesttxid
Windows:
marmara-cli.exe -ac_name=MCL marmaraissue receiverpk
"{\"avalcount\":\"n\", \"autosettlement\":\"true"|"false\", \"autoinsurance\":\"true"|"false\", \"disput
eexpires\":\"offset\", \"EscrowOn\":\"true"|"false\", \"BlockageAmount\":\"amount\"}" requesttxid

 receiverpk is the pubkey of the receiver which is the holder.

 "avalcount":"n" is the number of avalists i.e. '{"avalcount":"0"}' for protocol
1.

 "autosettlement":"true"|"false" AutoSettlement is true due to 100%
collateralization in Protocol 1.

 "autoinsurance":"true"|"false" Autoinsurance is true due to 100%
collateralization in Protocol 1.

 "disputeexpires":"offset" Dispute expiry is set to 0 due to 100
collateralization in Protocol 1.

 "EscrowOn":"true"|"false" EscrowOn is set to false due to 100%
collateralization in Protocol 1.

 "BlockageAmount":"amount" } blockage amount is set to 0 due to 100
collateralization in Protocol 1.

 requesttxid is the txid generated by the holder communicated to the issuer.
A typical example of a marmaraissue command to complete the credit loop by the issuer is given
below:
Linux:
./marmara-cli -ac_name=MCL marmaraissue receiverpk '{"avalcount":"0",
"autosettlement":"true", "autoinsurance":"true", "disputeexpires":"0", "EscrowOn":"false",

33

"BlockageAmount":"0" }' requesttxid
Windows:
marmara-cli.exe -ac_name=MCL marmaraissue receiverpk
"{\"avalcount\":\"0\" \"autosettlement\":\"true\" \"autoinsurance\":\"true\" \"disputeexpires\":\"offse
t\" \"EscrowOn\":\"false\" \"BlockageAmount\":\"0\"}" requesttxid
This marmaraissue command in turn returns a hex code response, and now the issuer has to execute
the sendrawtransaction method to get the transaction executed on the blockchain as follows:
Linux:
./marmara-cli -ac_name=MCL sendrawtransaction HEXCODE
Windows:
marmara-cli.exe -ac_name=MCL sendrawtransaction HEXCODE
This creates a credit loop between the issuer and the holder. The credits locked in a loop can be
circulated to buy things during shopping. The issuer and the holder get 3 times of chances of staking
on the MCL funds until the maturity of the credit loop.

• marmaracreditloop

To display the credit loop between the issuer and the holder, the following marmaracreditloop
command may be executed:
Linux:
./marmara-cli -ac_name=MCL marmaracreditloop txid
Windows:
marmara-cli.exe -ac_name=MCL marmaracreditloop txid

 txid is the baton transfer id of the Marmara Credit Loop.

• marmaratransfer

Scenario 2: The holder from the previous scenario wishes to utilize the coins locked in loop by
buying goods/services on the same credit loop created earlier. For such case, when the holder
transfers a credit in a loop, that node immediately becomes an endorser. And in such way, the last
node in a credit loop is always called the bearer (holder). In other words, all endorsers are
previously holders. One should bear in mind that endorsers lose the 3x staking power when a credit
is transferred to a new holder.

For this purpose, the new holder makes a marmarareceive request to the endorser to get the credit
for selling the goods/services by the following command:
Linux:
./marmara-cli -ac_name=MCL marmarareceive senderpk batontxid '{"avalcount":"n"}'
Windows:
marmara-cli.exe -ac_name=MCL marmarareceive senderpk batontxid {\"avalcount\":\"n\"}

 senderpk is the pubkey address of the endorser (the one buying the
product/service)

 batontxid is the baton transaction id of the previously created credit loop

34

 {"avalcount":"n"} is the number of avalists i.e. {"avalcount":"0"} for
protocol 1.

This marmarareceive call generates a hex code. This HEXCODE needs to be verified by the new
holder by executing the sendrawtransaction command:
Linux:
./marmara-cli -ac_name=MCL sendrawtransaction HEXCODE
Windows:
marmara-cli.exe -ac_name=MCL sendrawtransaction HEXCODE

Once this command is executed, a transaction id named txid gets generated. This txid along
with the receiverpk needs to be communicated to the endorser to complete the credit loop. But, an
alternative to this communication would be the use of marmarareceivelist method which could be
used by the endorser to see the receive requests made to himself/herself. Then, the endorser
executes the following marmaratransfer command to get the credits transferred to the new holder:
Linux:
./marmara-cli -ac_name=MCL marmaratransfer receiverpk '{"avalcount":"n"}' requesttxid
Windows:
marmara-cli.exe -ac_name=MCL marmaratransfer receiverpk {\"avalcount\":\"n\"} requesttxid

 receiverpk is the pubkey of the receiver which is the new holder.

 "avalcount":"n" is the number of avalists i.e. '{"avalcount":"0"}' for
protocol 1 (n=0).

 requesttxid is the txid generated by the new holder communicated to the
endorser.

Then the endorser executes the sendrawtransaction command with the hex code resulting from
marmaratransfercommand.

 Please note that sendrawtransaction command is used after
marmarareceive, marmaraissue, marmaratransfer and marmaralock to make
the results of commands to be executed on blockchain. The usage is
presented throughout the scenario 1 and 2.

In this way, the credit loops can circulate up to 1000th node within the maturity time to buy
goods/services.

• marmaraholderloops

This command returns the open and closed loops which can be constrainted by setting the
first and last height and the minimum and maximum amount. The method returns all the available
data if all the parameters are set to zero. marmaraholderloops command is indicated below:
Linux:
./marmara-cli -ac_name=MCL marmaraholderloops firstheight lastheight minamount maxamount
pubkey

35

Windows:
marmara-cli.exe -ac_name=MCL marmaraholderloops firstheight lastheight minamount
maxamount pubkey

Source: https://github.com/marmarachain/marmara/wiki/How-to-make-Marmara-Credit-Loops

References
For more detailed information on how Marmara Credit Loops work, kindly refer to detailed article
here: https://medium.com/@drcetiner/how-marmara-credit-loops-mcl-work-31d1896190a5

36

https://medium.com/@drcetiner/how-marmara-credit-loops-mcl-work-31d1896190a5
https://github.com/marmarachain/marmara/wiki/How-to-make-Marmara-Credit-Loops

Installing Marmara from Precompiled Binaries
One can download and unzip our pre-compiled binaries. This is the simplest method and hence
requires no compiling procedure.

Linux
Verify that your system is up to date.
sudo apt-get update
sudo apt-get upgrade -y

Install the dependency packages
sudo apt-get install libgomp1

Downloading Assets from Releases
Go to Releases and download Marmara linux binaries .zip from Assets and follow the instructions
given below.

 Make sure to follow the following instructions on the downloaded directory
or any other directory where you moved or copied.

sudo apt install unzip
unzip MCL-linux.zip
sudo chmod +x marmarad marmara-cli fetch-params.sh
./fetch-params.sh

Start and Run the Marmara Chain
To start the chain, open the command prompt and execute the following sets of commands:
./marmarad

To stop the chain:
./marmara-cli -ac_name=MCL stop

Backup Your Wallet
Backing up the wallet.dat file is very essential as it holds the assets of one. On a Linux machine, the
file could be found in: ~/.komodo/MCL/wallet.dat

One method to backup this file is to archive a copy of the file.
#Copy the wallet.dat file
cp -av ~/.komodo/MCL/wallet.dat ~/wallet.dat

#Rename the wallet.dat file
mv ~/wallet.dat ~/2020-08-09-wallet_backup.dat

Make an archieve of the wallet.dat file
tar -czvf ~/2020-08-09-wallet_backup.dat.tgz ~/2020-08-09-wallet_backup.dat

Move the final file to a secure location

37

https://github.com/marmarachain/marmara/releases

Enabling UFW
This step is not required for installing MCL but can be used for server security purposes.

• Check the status of UFW by
sudo ufw status

• UFW package can be installed by executing the following command
sudo apt install ufw

• Activate UFW and allow connections by executing the following commands
echo y | sudo ufw enable
sudo ufw allow ssh
sudo ufw allow "OpenSSH"
sudo ufw allow 33824
sudo ufw allow out 33824

MacOS
Issue the following command in a terminal to install the command line tools:
xcode-select –-install

Download the .zip file from Releases page under Assets here to your macOS machine and extract
the files. Change directory to the location of marmarad & marmara-cli on the terminal.

Run the following command:
./fetch-params.sh

Start and Run the Marmara Chain
To start the chain, open the command prompt and execute the following sets of commands:
./marmarad

To stop the chain:
./marmara-cli -ac_name=MCL stop

Backup Your Wallet
Backing up your wallet.dat file is very critical. One method to backup this file is to archive a copy
of the file.

On MacOS, the wallet.dat file is located here: ~/Library/Application\ Support/Komodo/wallet.dat

Windows
Downloading Files from Releases
Download the .zip file from Releases page under Assets here to your Windows computer and
extract&place the files (marmarad.exe & marmara-cli.exe) in a new folder on the Desktop called
MCL or any other location you prefer (remember the location and use that).
For this guide, we are using MCL directory on Desktop.

38

https://github.com/marmarachain/marmara/releases/

Create the Directory for the Zcash Parameters
Open the command line prompt and execute the following command:
mkdir “%HOMEPATH%\AppData\Roaming\ZcashParams”

Download following files and move them into the newly created directory i.e. MCL.
• sprout-proving.key
• sprout-verifying.key
• sapling-spend.params
• sapling-output.params
• sprout-groth16.params

Start and Run the Marmara Chain

To start the chain, open the command prompt and execute the following sets of commands:
cd Desktop\MCL\

marmarad.exe -ac_name=MCL -ac_supply=2000000 -ac_cc=2 -addnode=5.189.149.242 -
addnode=161.97.146.150 -addnode=149.202.158.145 -addressindex=1 -spentindex=1 -
ac_marmara=1 -ac_staked=75 -ac_reward=3000000000

To stop the chain:
cd Desktop\MCL\
marmara-cli.exe -ac_name=MCL stop

Backup Wallet
Backing up the wallet.dat file is very critical. One method to backup this file is to create a copy and
archive it.

On Windows machine, the file is located below:

%HOMEPATH%\AppData\Roaming\Komodo\MCL\wallet.dat

Making Marmara Credit Loops
Start the chain as with pubkey as instructed in the usage guideline here or
https://github.com/marmarachain/marmara/wiki/Getting-Started-with-Marmara

Source: https://github.com/marmarachain/marmara/wiki/Install-Marmara-from-Precompiled-
Binaries

39

https://github.com/marmarachain/marmara/wiki/Install-Marmara-from-Precompiled-Binaries
https://github.com/marmarachain/marmara/wiki/Install-Marmara-from-Precompiled-Binaries
https://github.com/marmarachain/marmara/wiki/Getting-Started-with-Marmara
https://z.cash/downloads/sprout-groth16.params
https://z.cash/downloads/sapling-output.params
https://z.cash/downloads/sapling-spend.params
https://z.cash/downloads/sprout-verifying.key
https://komodoplatform.com/downloads/sprout-proving.key

Understanding Marmara Chain
Marmara Chain stands out in the blockchain world with its hybrid consensus mechanism,
employing 25% Proof of Work (PoW) and 75% Proof of Stake (PoS). This innovative blend ensures
secure, decentralized control while promoting an efficient and scalable network. Most blockchains
use Proof of Work (PoW) or Proof of Stake (PoS) consensus mechanisms. PoW involves solving
complex puzzles to add a new block to the blockchain (think of it like a digital mining process).
PoS, on the other hand, involves holding and locking up a certain amount of tokens to validate a
new block (imagine notaries getting rewards based on their shares in a common fund but with a
self-financing mechanism).

The Marmara Credit Loops (MCL) Solution
At the heart of Marmara Chain is MCL, a system that brings unprecedented liquidity and utility to
traditional financial instruments even before their maturity dates. But that's not all. MCL takes the
unique approach of 'activating' and 'locking' coins for staking, providing varying degrees of staking
power - 1x for activated and a whopping 3x for those locked within credit loops. The best part?
Activated coins can be unlocked anytime, offering a level of liquidity unheard of in traditional
staking systems while coins locked in credit loops can still be circulated in real economy by simply
endorsing same as post-dated checks.

Revolutionizing Transactions with Credit Loops
Credit loops act as digital versions of post-dated checks or promissory notes, offering unique
benefits. Coins locked in credit loops not only boast 3x staking power but can also be circulated in
the real economy simply by endorsing them. This way, they continue contributing to the staking
power of the holder while serving real-world transactions. Upon the maturity date, they are
automatically unlocked.

Mining and Earning MCL Coins
MCL coins, the native currency of Marmara Chain, can be earned in more ways than one. Thanks to
the 25% PoW consensus mechanism, they can be mined. Alternatively, they can be earned by
selling or buying goods and services within the Marmara Credit Loops system.

Source:
https://marmara.io/blog/marmara-chain-1/the-ultimate-simplified-guide-to-marmara-chain-and-
marmara-credit-loops-54

40

https://marmara.io/blog/marmara-chain-1/the-ultimate-simplified-guide-to-marmara-chain-and-marmara-credit-loops-54
https://marmara.io/blog/marmara-chain-1/the-ultimate-simplified-guide-to-marmara-chain-and-marmara-credit-loops-54

Unlock the Power of Marmara Blockchain Staking
Investment Strategies for Maximum APR
Welcome to the exciting world of Marmara Blockchain! As a member of the Marmara Team, I am
thrilled to share with you essential information on the Marmara Blockchain staking mechanism and
investment strategies to help you achieve the best Annual Percentage Rate (APR) possible. In this
comprehensive guide, we will explore the innovative staking system of Marmara and provide you
with valuable insights on how to maximize your returns.

Marmara Blockchain Staking Mechanism
Marmara Blockchain employs a unique staking system, which is a combination of 25% mining
(Proof of Work) and 75% staking (Proof of Stake). The staking aspect is further divided into two
parts: Activated Staking and Credit Loop Staking.

1. Activated Staking: By locking your coins in activated staking funds, you gain 1x staking
power among the 75% Proof of Stake. Activated staking accounts for 25% of the total
staking rewards. The coins can be unlocked at any time, offering you greater flexibility in
managing your investments.

2. Credit Loop Staking: When you lock your coins in credit loops, you receive 3x staking
power. This means that 75% of the total staking rewards come from credit loops. The
staking rewards generated in this category are significantly higher than those from activated
staking.

3. Investment Strategies for Optimal APR: To maximize your APR, you need to consider
four critical parameters: total coins locked in activated staking, total coins locked in credit
loops within the whole chain, and the number of your coins locked in activated and credit
loops. Here are three investment strategies to help you make the most out of your Marmara
Blockchain investments:

• Analyze the Blockchain Parameters: Keep an eye on the total coins locked in both
activated staking and credit loops within the Marmara Blockchain. This information
can be obtained from the Marmara Chain Explorer site. By regularly monitoring
these parameters, you can make informed decisions on the best time to lock your
coins and in which category.

• Diversify Your Investment: One effective strategy to optimize your APR is by
diversifying your investments across both activated staking and credit loops. Allocate
a portion of your coins to activated staking, which offers more flexibility due to its
unlock feature, and invest the remaining coins in credit loops to take advantage of
the higher staking power.

• Calculate Your Potential Rewards: Use the Marmara Staking Calculator to
estimate your daily and annual earnings, as well as your annual ROI, based on
different investment scenarios. By experimenting with various combinations of coins
locked in activated and credit loops, you can identify the optimal allocation that
yields the highest APR.

41

Conclusion

Marmara Blockchain offers a unique and lucrative staking mechanism that allows you to maximize
your returns through strategic investment decisions. By understanding the staking system,
diversifying your investments, and utilizing the Marmara Staking Calculator, you can unlock the
full potential of Marmara Blockchain and achieve an impressive APR on your investments. Happy
staking!.

Source:
https://marmara.io/blog/marmara-chain-1/unlock-the-power-of-marmara-blockchain-staking-27

42

https://marmara.io/blog/marmara-chain-1/unlock-the-power-of-marmara-blockchain-staking-27

Experience the Power of MCL Staking on Marmara Chain:
Unlocking Unique Benefits in the Crypto Economy

Marmara Chain, a fork of the Komodo Platform, is revolutionizing the world of staking with its
unique and powerful staking mechanism. Offering unparalleled flexibility, Marmara Chain's
innovative MCL staking system presents a myriad of advantages over traditional staking platforms.
In this article, we'll explore the incredible benefits of staking MCL on Marmara Chain and how it's
set to transform the cryptocurrency landscape.

1. No Minimum Staking Requirement: Freedom to Stake Any Amount

Unlike other staking platforms like Ethereum, which require a minimum of 32 ETH to
participate in staking, Marmara Chain has no minimum staking requirement. This means
users can stake any amount of MCL, making it accessible and affordable for everyone
interested in earning rewards through staking.

2. Flexible Staking: Unlock Your Coins Anytime

Marmara Chain's staking system allows users to unlock their staked coins whenever they
need them. This flexibility contrasts with other staking platforms where coins are locked
for a fixed period, such as six months, with no option to unlock them until the end of the
staking term. Marmara Chain's staking system empowers users to retain control over their
assets and use them as needed.

3. Marmara Credit Loops: Boost Your Staking Power by 3x

Marmara Chain's unique staking mechanism offers two ways to lock coins for staking:
activated staking mode and Credit Loops. Activated staking mode provides 1x staking
power, while Credit Loops give users an impressive 3x staking power. This increased
staking power can significantly boost rewards and make MCL staking even more lucrative
for participants.

4. Circulation of Staking Coins in the Real Economy

One of the standout features of Marmara Chain's staking system is the ability to circulate
staking coins in the real economy. Coins locked in Credit Loops can be transferred or
endorsed to other users before their maturity date, similar to post-dated checks or
promissory notes. This innovative approach encourages the use of MCL in real-world
transactions while still providing staking rewards.

5. 100% Collateralization: A Secure and Trustworthy System

Marmara Credit Loops are fully collateralized on the Marmara blockchain, ensuring a
secure and trustworthy staking system. This level of security eliminates the risk of non-
redemption often associated with traditional credit tools, such as post-dated checks, and
provides peace of mind for MCL stakers.

43

Conclusion:
Marmara Chain's groundbreaking MCL staking system offers unparalleled flexibility,
increased staking power, and the unique ability to circulate staking coins in the real
economy. By eliminating minimum staking requirements and allowing users to unlock their
assets at any time, Marmara Chain has positioned itself as a leader in the world of
cryptocurrency staking. Discover the incredible potential of MCL staking on Marmara
Chain and experience the future of decentralized finance today.

Source:
https://marmara.io/blog/marmara-chain-1/experience-the-power-of-mcl-staking-on-
marmara-chain-21

44

https://marmara.io/blog/marmara-chain-1/experience-the-power-of-mcl-staking-on-marmara-chain-21
https://marmara.io/blog/marmara-chain-1/experience-the-power-of-mcl-staking-on-marmara-chain-21

Why Marmara (MCL) Coin Stands Out
In the rapidly evolving world of cryptocurrencies, passive income opportunities such as staking
have become increasingly popular among investors. With countless blockchain platforms offering
various staking rewards, it can be challenging to find the right investment for your hard-earned
money. This is where Marmara (MCL) Coin, with its impressive 34.98% APR* staking rewards,
truly stands out from the competition.
We will compare the staking rewards offered by Marmara Chain to those of other prominent
blockchain platforms. We will also discuss why Marmara Chain's unique features make it an ideal
choice for investors seeking to maximize their passive income.

Marmara Chain's current impressive 34.98% APR is not the only reason why it is an
excellent choice for staking. Here are some key factors that contribute to its superiority:

1.Innovative Credit Loops System: Marmara Chain's unique Credit Loops system allows
users to earn even higher rewards by participating in credit loops that will give you a power
of 3x staking.
2.Decentralization and Security: Marmara Chain boasts a robust and secure network,
ensuring that your staked MCL coins are protected from potential threats.
3.User-friendly Staking Process: Staking MCL coins is an easy and straightforward
process, making it accessible to both beginners and experienced investors.
4.The Staking Revolution: Marmara Chain's staking mechanism comprises 75% Proof of
Stake (PoS), meaning the majority of blocks are generated through staking. In comparison to
other staking blockchains, Marmara Chain offers several advantages that make it the
preferred choice for crypto enthusiasts.
5.No minimum staking requirement: Unlike platforms like Ethereum, where a minimum
of 32 ETH is required for staking, Marmara Chain allows users to stake any amount of MCL
tokens. This inclusive approach enables more people to participate in the staking process
without facing financial barriers.
6.Flexible unlocking: Marmara Chain offers unmatched flexibility in unlocking staked
tokens. Unlike other staking platforms where users must wait for a predetermined period,
Marmara Chain allows users to unlock their staked tokens at any time, offering increased
liquidity.

45

7.Marmara Credit Loops – 3x Staking Power: Marmara Chain's innovative Credit Loops
provide an incredible 3x staking power compared to traditional activated staking. This
increased staking power is beneficial for users who participate in the platform's unique
Credit Loops system.
8.Real-world applicability with Credit Loops: Marmara Credit Loops, inspired by post-
dated checks and promissory notes, enable the circulation of staking coins within real
economies. Users can transfer or circulate coins locked in Credit Loops contracts before
their maturity dates, making MCL a practical solution for real-world transactions.
9.No need for powerful hardware: Marmara Chain's staking mechanism eliminates the
need for high-performance computing hardware, as its one-minute block time ensures
efficient block generation. This accessibility allows more people to participate in staking
without worrying about investing in expensive equipment.
10.The Future of Staking with Marmara Chain: Marmara Chain's unique staking
mechanism, combined with its Marmara Credit Loops, offers an unparalleled experience for
crypto enthusiasts. By enabling increased staking power, flexible unlocking, and real-world
applicability, Marmara Chain is poised to become a game-changer in the crypto space.
11.Active Development and Support: Marmara Chain has a dedicated team of developers
and a supportive community, ensuring that the platform continues to grow and improve over
time.
12.Future Growth Potential: With its innovative features and strong fundamentals,
Marmara Chain is well-positioned for continued growth and success in the competitive
world of blockchain technology.

Conclusion

In conclusion, Marmara (MCL) Coin offers unparalleled staking rewards when compared to other
prominent blockchain platforms. Its impressive 34.98% APR currently, coupled with the innovative
Credit Loops system, robust security, user-friendly staking process, and future growth potential,
make Marmara Chain an exceptional choice for investors seeking to maximize their passive
income.

Don't miss the opportunity to be part of this staking revolution. Join the Marmara Chain community
today and experience the benefits of Marmara Credit Loops for yourself.

Don't miss out on this lucrative opportunity to grow your cryptocurrency investments with Marmara
(MCL) Coin. Join the thriving Marmara Chain community today and experience the benefits of
superior staking rewards for yourself!

Source:

https://marmara.io/blog/marmara-chain-1/discover-the-superior-staking-rewards-with-marmara-
mcl-coin-a-comprehensive-comparison-23

46

https://marmara.io/blog/marmara-chain-1/discover-the-superior-staking-rewards-with-marmara-mcl-coin-a-comprehensive-comparison-23
https://marmara.io/blog/marmara-chain-1/discover-the-superior-staking-rewards-with-marmara-mcl-coin-a-comprehensive-comparison-23

Marmara Connector

Installing Marmara Connector
Build Marmara Connector from Source

For executable file
Open terminal in file of project. I mean where there is src.

• Test Run
fbs run

• Create executable file
fbs freeze

Getting Started with Marmara Connector Development

Preparing the Development Environment

Prerequisites
 PYTHON3 -> python3.6 is needed for fbs packaging
 PyQt5
 QT Designer
 pip library with latest version

Linux

Make sure that the OS is up to date and upgraded:
sudo apt-get update
sudo apt-get upgrade
Install tools required to build dependencies:
sudo apt install git python3 python3-pip python3-venv
Clone the repository to a desired location on the local machine:
git clone https://github.com/marmarachain/marmara-connector.git

For a system-wide PYQT5 and Designer Installation issue the following commands in the terminal:
pip3 install pyqt5==5.9.2
sudo apt-get install qttools5-dev-tools
sudo apt-get install python3-pyqt5
sudo apt-get install pyqt5-dev-tools

To work with a virtual environment on the project, issue the following commands outside the
working directory of the project:
python3 -m venv venv
source venv/bin/activate
pip install pip==21.2.4
pip install -r requirement

47

In order to run the project, run mainApp.py under /src/main/python/ directory:
python3 mainApp.py

Windows
Install the following tools required to build dependencies:
git python3 python3-pip python3-venv

To install QT5 Designer:
Install the latest version of "pyqt5-tools" using:
pip install pyqt5-tools --pre

The "designer.exe" will be installed in ...Lib\site-packages\qt5_applications\Qt\bin.

Clone the repository to a desired location on the local machine:
git clone https://github.com/marmarachain/marmara-connector.git

Change directory to marmara-connector. Create a virtual environment in the current directory:
python3 -m venv venv

Activate the virtual environment:
call venv\scripts\activate.bat

Continue the following steps while the virtual environment is active.
Install the required libraries:
pip install fbs PyQt5==5.9.2
pip install pip==21.0.1
pip install -r requirement

Resources
To setup the Windows OS environment with different python versions, check out here:
https://medium.com/swlh/how-to-set-up-a-virtual-environment-with-a-different-python-version-on-
windows-10-9900eb0acf9a

Install Marmara Connector from Releases
From Releases, kindly find Assets for the Marmara Connector.

• Ubuntu Installation
Download the related .zip file and unzip the file.
To enable the application file to run:
chmod +x MarmaraConnector

• Windows Installation
Download the related .exe file. After the application is installed, run it as an administrator.

48

https://github.com/marmarachain/marmara-connector/releases
https://medium.com/swlh/how-to-set-up-a-virtual-environment-with-a-different-python-version-on-windows-10-9900eb0acf9a
https://medium.com/swlh/how-to-set-up-a-virtual-environment-with-a-different-python-version-on-windows-10-9900eb0acf9a

Marmara Connector Software Specifications Document
Abbreviations
OS: Operating System
MBC: Marmara Blockchain
UI: User Interface
Definitions
Issuer: The person who first creates a credit in a credit loop. It is the person who forms the first
node in the credit loop. The credit may be collateralized 100% or with even zero-collateralization
until maturity date of a credit.

Bearer (Holder): The last node in a credit loop is always called bearer (holder). When someone
transfers a credit in a loop, that node becomes immediately an endorser.

Endorser: All other nodes that fall between the issuer, which is the first node in the credit loop, and
the last node, and transfer the credit to the next node.

Maturity: The time a credit expires. It is measured as blocks in estimation. The block per day is
1440 (60 blocks an hour times 24 hours a day). Suppose a credit is for 100 days, the maturity is
1440x100, i.e. 144,000 blocks.

Settlement: When a credit matures, settlement is made to the holder, the last node in a loop.
Settlement may be automatic or manual.

Escrow: Trust based parties for Protocol 2. If EscrowOn is false, then 100% collateralization is
used and settlement is automatic. There is no need for escrows in protocol 1 which works as
complete trustless version.

Avalist: Avalists support issuer or endorsers with MCL as additional colletarization and can earn
with 3x staking with those support. In case of non-redemption, their funds are utilized. Avalists are
available only in Protocol 2. The parameter avalcount is always zero for protocol 1.

BlockageAmount: This is a term for protocol 2. An issuer may be asked to put some
collateralization by a holder. In that case, the issuer gets benefit of 3x staking in protocol 2.

Dispute Expiry: It is grace period for solving non-redemption problem in credit loops in protocol
2. An issuer may have this time as blocks when creating a credit under protocol 2 without or
insufficient collateralization. Before this period expires, an escrow should do all actions according
to aggrement with the issuer to solve non-redemption. Otherwise, the escrow is penalized in the
system.

Non-Functional System Requirements
• This software is a desktop based GUI application that has distributions for Windows and

Linux OS.
• The software is developed in Python using PyQt library as well as Qt Designer for GUI

design.
• Bugs, new features, improvements are handled through github issues on Marmara Connector

github page.
• Distribution packages are provided under Releases page with details.
• Wiki is constructed for building Connector from source code as well as for guiding

49

developers to contribute to the open source code base.
• Contributions to the code base are welcomed through pull requests.

Functional System Requirements
• The software is based on Marmara Protocol 1.
• Marmara Connector enables connection to Marmara blockchain running on a local or

remote machine/platform.
• The local platform is either Linux, Windows or MacOS based OS.
• The remote platform is Linux based OS.
• The desktop application is used to handle Marmara Credit loop operations as well as wallet

operations.

The following parameters are to be handled in the following way at the code base as per decided in
Marmara Protocol 1.

• autosettlement: AutoSettlement is set to true due to 100% collateralization in Protocol 1.

• autoinsurance: Autoinsurance is set to true due to 100% collateralization in Protocol 1.

• disputeexpires: Dispute expiry is set to 0 due to 100 collateralization in Protocol 1.

• EscrowOn: EscrowOn is set to false due to 100% collateralization in Protocol 1.

• BlockageAmount: Blockage amount is set to 0 due to 100 collateralization in Protocol
1.

General constraints/rules
• The users described in this document may be the holder, the issuer or the endorser

unless it is explicitly described.
• Block heights that represent maturity block must be converted to datetime data and vice

versa.
• For the datetime fields, the earliest date should not be before the commencement of the

MBC. The latest datetime should not be further than current datetime.
• For datetime fields, a calender view should be presented in the ui for easy selection of

date.
• Every word on the ui must be translatable except for the messages directly received

from the MBC.
• Actions and calls made to the MBC and received from the MBC must be logged to a log

file wherever applicable and should be reachable by the user.

Server Definition
• The user should be able to create a server record having fields of server name, server user

name, ip address and server password.
• The fields server name, server user name and ip address saved by the user should be

stored in a file readable, writable by the application. The password must not be stored.
• The user should be able to see (read) all his/her server details from the list and able to

update them.
• The user should be able to delete a server from the list.

50

Business Rules/Constraints/Assumptions (Server Definition)
• In the server page; the server name, server user name, ip address and server password

must be required fields and any of them cannot be left blank.
• In case the user wishes to update any of the saved server fields, a message should be

popped to warn the user if he/she is sure of the relevant update.
• In case the user wishes to delete a server, a message should be popped to warn the user

if he/she is sure of the deletion.
• The server details should be stored in a file even when the user shuts down the GUI

application.
• The data directory that contains the server details should stay even if the application is

uninstalled or upgraded in the respective host.

Contacts Definition
• The user should be able to create a contact having name, wallet address and pubkey

fields.
• The name, wallet address and pubkey fields saved by the user should be stored in a file

readable, writable by the application.
• The user should be able to see(read) all his/her contacts from the list and able to update

them.
• The user should be able to delete a contact from the list.
• The contacts should be stored in a file even when the user shuts down the GUI

application.
• The user should be able to see the name of the person he/she added to the contacts list

while making credit loop transactions wherever applicable.

Business Rules/Constraints/Assumptions (Contacts Definition)
• In the contacts page; the name, wallet address and pubkey fields must be required fields

and cannot be left blank.
• In case the user updates any of the contacts’ fields, a message should be popped to

warn the user if he/she is sure of the relevant update.
• In case the user wishes to delete a contact, a message should be popped to warn the

user if he/she is sure of the deletion.

Installing MBC
• The program needs to check if MBC is installed.
• The user should be able to install MBC to the platform (local or remote) if it doesn’t

exist.
• In case MBC is installed beforehand, the user may be asked to provide a path to the src

folder.
• During installation, a bootstrap option needs to be provided for downloading bootstrap

along with information box displaying the relevant info (Bootstrapping is not
recommended).

• During the installation, the user needs to be informed about the process and the progress.
(Indexing progress etc.)

Wallet
• The UI should implement two methods for creating a wallet: The user should be able to

create a wallet address from his/her own seeds or through the use of getnewaddress
command in the UI.

• The user should be able to create a pubkey from the UI (launch MBC with normal
launch parameters and execute getnewaddress and validateaddress commands). The errors

51

produced at the backend should be made available to the user at the UI.
• The UI should enable inputting 12 seed words to create private key from one’s own

seeds (convertpassphrase). Warning should be displayed such that the user doesn’t include
special characters in those words. The UI should return the agamapassphrase, address,
pubkey and wif.

• The user should be able to add a private key to the wallet (importprivkey). The resulting
wallet address and the pubkey (after validateaddress command) should be displayed to the
user.

• The user should be able to reveal the private key corresponding to an address in his/her
wallet.

Setting pubkey and Running/Stopping MBC
• The user should be able to run the MBC node with a specific pubkey. From a list of wallet

addresses and pubkeys belonging to the user, the user should be able to set a pubkey and
start the MBC with it. Once the MBC node is started with a selected pubkey, an
information could be displayed to the user.

• The user should be provided with an option to start the chain with reindexing.
• The user should be able to start the MBC node with a rescan option.
• The user should be able to stop the MBC node. An information could be displayed to the

user informing him/her.

Reaching Details about Node and Wallet in MBC
• The user should be able to see and refresh his/her node's Marmarachain status, sync

status, current difficult, current block height, longest chain, connections and the latest
refresh time from the interface.

• The user should be able to see the pubkey and wallet balances (the normal amount, the
activated amount, total normal amount and total activated amount) for his/her node.

• The user should be able to see the total normal amount and total activated amount
available in his/her wallet.

Business Rules/Constraints/Assumptions (Setting pubkey and Running/Stopping
MBC)

• The UI should not allow setting a pubkey that is short in character length. (The software
should not create a means for the user to set a wrong pubkey while starting the MBC.)

• Reindexing option should be defaulted to False.
• Rescanning option should be defaulted to False.

Activating and Deactivating Coin
• The user should be able to activate (lock) and deactivate(unlock) coins from the UI. Rule:

The user should be asked for a confirmation of the relevant operation.

Sending Coins to an Address
• The user should be able to send coins directly to an address by inputting the address.

• The user should be able to send coins by selecting from his/her contact list.
• The user should be able to generate the QR Code of his/her own wallet address to make

a coin receive request.

Business Rules/Constraints/Assumptions (Sending Coins to an Address)
• A warning may be provided such that the user doesn't send coins to an Activated Address.

The user should be noted that this action burns coins.

52

• The user may be informed that a transaction fee is deducted for the transaction being
made from one's Normal Amount.

Staking/Mining Mode in MBC
• There are two modes of the MBC node, namely staking and mining.
• The UI should display the current mode of the node (getgenerate).
• The user should be able to change the mode of the MBC node.
• If the user wishes to change the mode of the node to staking, an information could be

displayed that warns the user that there should be an activated amount in the wallet for
staking.

• If the user wishes to change the mode of the node to mining, the UI should ask the user to
input the number of cores to be used for mining. There should be an option to choose the
max number of threads.

Credit Loops Operations

Incoming loop requests
• The user should be able to review and confirm the incoming credit loop requests for a

given day-time. Rule: The default could be the last 24 hours. If default is not selected, the
user shall be able to select a datetime from the calender.

• The user should be able to review the credit loop transfer requests.
• The txid, amount, maturity, receiver pubkey fields should be available for reviewing the

incoming loops requests as well as loop transfer requests.
• The user should be asked for confirming the respective transaction. The respective result

should be presented in the ui. (txid for confirmation or transaction abort message in case
of dismissal).

Making Credit loop requests
• The holder (the one selling the product/service) should be able to request for a credit from

the issuer (the one paying the product/service) by entering the amount, sender pubkey,
maturity in datetime. The holder shall be able to select the sender pubkey (issuer's
pubkey) from his/her list of contacts or insert the pubkey manually.

• A confirmation message should be returned to the holder for confirming the credit loop.
The resulting txid should be returned to the holder in case he/she approves the transaction.
Otherwise, a message needs to be displayed for the transaction that has been aborted.

Transactions and Loop Queries
• The user shall be able to see his/her own transactions (txid) on the explorer site between

his/her choice of selected datetime fields.
• The user should be able query the whole MBC for the active loops he/she has and view

the loop address, amount in that loop address, amount in active loops, amount in closed
loops, number of pending and number of closed loops.

• The user should be able to query a txid to display the details of a credit loop between the
issuer and the holder (the amount with currency, the batonid, the maturity datetime, the
issuer pubkey).

53

Packaging Guide for Marmara Connector for Different OS
For packaging the Qt Gui Application, fbs is used.

Prerequisites
 PYTHON3 -> python3.6 is needed for fbs packaging
 PyQt5
 pip library with latest version

Guidelines for Linux Packaging
Make sure that the OS is up to date and upgraded:
sudo apt-get update
sudo apt-get upgrade

Install tools required to build dependencies:
sudo apt install git python3 python3-pip python3-venv

Clone the repository to a desired location on the local machine and make sure the branch is set to
master:
git clone https://github.com/marmarachain/marmara-connector.git
cd marmara-connector
git checkout master

Check the python3 version. The free version of fbs only supports Python 3.5 and 3.6. So, make sure
to switch to python 3.6 for fbs packaging.
python3 --version

Create a virtual environment in the current directory with python3.6:
python3 -m venv venv

Activate the virtual environment:
source venv/bin/activate

Install the required libraries:
sudo apt-get install qttools5-dev-tools
sudo apt-get install python3-pyqt5
sudo apt-get install pyqt5-dev-tools
pip install wheel
pip install pip==21.2.4
pip3 install pyqt5==5.15.4
pip install -r requirements

To run the basic PyQt application from source, execute the following command:
fbs run

To turn the app's source code into a standalone executable, run the following command:

54

https://github.com/mherrmann/fbs

fbs freeze
This creates the folder target/ which then can be copied to any other computer (with the same OS as
yours) to run the app there.

To create an installer on Linux, the following command is used:
fbs installer

However, the installer command requires that you have fpm. One can follow these instructions in
here to install it and use the installer command to create the .deb executable file. To install fpm:
sudo apt-get install ruby ruby-dev rubygems build-essential
gem install --no-document fpm

To make sure fpm is installed correctly, try running the following command:
fpm --version

Now, running the fbs installer command would create the .deb executable Linux installer.

Guidelines for Windows Packaging
Install the following tools required to build dependencies:
git python3 python3-pip python3-venv
Open the command prompt with admin privileges and clone the repository to a desired location on
the local machine:
git clone https://github.com/marmarachain/marmara-connector.git
cd marmara-connector

Check the branch and make sure the branch is set to master:
git branch
git checkout master

Check the python version:
python --version

The free version of fbs only supports Python 3.5 and 3.6. So, make sure to switch to pyhon 3.6 for
fbs packaging. For this refer to the resource provided in 1.

Place the .dll files under C:\Windows\System32 folder.

Create a virtual environment in the current directory:
python36 -m venv venv

Activate the virtual environment:
call venv\scripts\activate.bat

Continue the following steps while the virtual environment is active:

Install the following libraries:

55

https://medium.com/swlh/how-to-set-up-a-virtual-environment-with-a-different-python-version-on-windows-10-9900eb0acf9a

python -m pip install --upgrade pip
python -m pip install pywin32
pip install wheel
pip install PyQt5
pip install pyqt5-tools
pip install pip==21.3.1
pip3 install pyqt5==5.15.4
pip install -r requirements

To run the basic PyQt application from source, execute the following command:
fbs run

Use the following command to turn the app's source code into a standalone executable:
fbs freeze

This creates the folder target/. You can copy this directory to any other computer (with the same OS
as yours) and run the app there. Before using the installer command on Windows, please install
NSIS. Then, create an installer by using the following command.
fbs installer

This creates the installer directory. Change directory to installer, right click and compile the
installer.nsi with NSIS. This creates the MarmaraConnectorSetup.exe file under the target directory.

Using QT Designer to Build Marmara Connector Front End
Having installed Qt Designer, launch the application and open the "guidesigner.ui" file in case you
want to improve/change the design.

The desired development can be made from the opened QT Designer screen.

After the design part is finished, the .ui file should be converted to the python file.

Convert code ui to python:
pyuic5 -x guiDesigner.ui -o guiDesign.py

Then, a python file named "guiDesign.py" would be created.

Open the mainApp.py file with any IDE of your choice.

In the mainApp.py file, the file named "guiDesign.py" is imported. "Ui_MainWindow" is extend
to the class.

from guiDesign import Ui_MainWindow # Import

class MainClassGUI(QMainWindow, Ui_MainWindow): #Extend

def __init__(self, parent=None):
 super(MainClassGUI, self).__init__(parent)

56

http://nsis.sourceforge.net/Main_Page

 self.setupUi(self)

In this way, we can reach every feature of the GUI design.
We can try our project with the command below.
python3 mainApp.py

Sources:
https://github.com/marmarachain/marmara-connector/wiki/
https://github.com/marmarachain/marmara-connector/wiki/Packaging-Guide-for-Marmara-
Connector-for-different-OS
https://github.com/marmarachain/marmara-connector/wiki/Marmara-Connector-Software-
Specifications-Document
https://github.com/marmarachain/marmara-connector/wiki/Using-QT-Designer-to-build-Marmara-
Connector-Front-End
https://github.com/mherrmann/fbs-tutorial
https://www.learnpyqt.com/tutorials/packaging-pyqt5-apps-fbs/

57

https://www.learnpyqt.com/tutorials/packaging-pyqt5-apps-fbs/
https://github.com/mherrmann/fbs-tutorial
https://github.com/marmarachain/marmara-connector/wiki/Using-QT-Designer-to-build-Marmara-Connector-Front-End
https://github.com/marmarachain/marmara-connector/wiki/Using-QT-Designer-to-build-Marmara-Connector-Front-End
https://github.com/marmarachain/marmara-connector/wiki/Marmara-Connector-Software-Specifications-Document
https://github.com/marmarachain/marmara-connector/wiki/Marmara-Connector-Software-Specifications-Document
https://github.com/marmarachain/marmara-connector/wiki/Packaging-Guide-for-Marmara-Connector-for-different-OS
https://github.com/marmarachain/marmara-connector/wiki/Packaging-Guide-for-Marmara-Connector-for-different-OS
https://github.com/marmarachain/marmara-connector/wiki/

MCL Concise Beginner's Guide
1) Download and install Marmara Connector. The
installation process will automatically help you
synchronize the chain. (When synchronization occurs,
the connector will turn green against "Chain Status"
and "Chain Synchronous", this process may take up to
1-2 days depending on different factors. You can
observe how many more days of blocks will be loaded
against "Chain Synchronous". The connector shows
not how many days are left, It gives information about
how many days of blocks are left.) You can check
what action has been taken in the Connector via
notifications in the lower left corner.

2) Opening staking and mining without synchronization may cause the blocks to become corrupted.
Also, obtaining a wallet address without synchronization will slow down synchronization. After
synchronization, you can add an address or addresses with the “Add New Address” option in the
“Chain” tab. Then stop the chain and start it with one of the wallet addresses you received.

3) Buy MCL and send it to one of your Marmara Connector wallet addresses.

4) Lock the MCLs you send to your Connector address in parts with the “Lock from Normal
Balance” option from the Wallet tab. Congratulations! You started 1x staking with the MCLs you
locked.

5) With the "Incoming Loop Requests" in the Credit Loops tab, you can see the credit loop requests
you receive and approve the ones you wish. After this process, you will start staking with 3x power.
You can also submit your loop requests with the “Request Loop” option in the Credit Loops tab, the
MCL amount in your approved requests will be staking 3x, as long as you are a holder. You can use
the MCLs you hold in the loops by approving any of the transfer requests you receive with the
"Credit Loops-Incoming Credit Requests-Credit Loops Transfer Request" option. However, in that
case, 3x staking power will be transferred to the new owner. You can track your staking earnings by
selecting and searching the date range you want to see from the "Statistics-Earnings Statistics" tab.

6) If you do not want to participate in the cycles and just want to own or accumulate MCL, you can
do this by having an MCL address through Komodo Wallet. Another alternative is the “Zincir
Market” application, which is still in the testing phase, where you can shop commission-free and
sell your products with MCL.

http s ://marmara.io/
https://marmara.io/blog/
https://marmara.io/discord
https://www.youtube.com/c/MarmaraCreditLoops
https://github.com/marmarachain
https://t.me/MarmaraChain
https://marmara.io/docs/IMSS2019_WhitePaper_Turkce.pdf
https://coinpaprika.com/tr/converter/mcl-marmara-credit-loops/try-turkish-lira/1/
https://www.coingecko.com/en/coins/marmara-credit-loops
Where to Buy MCL: Kriptrade.com Xeggex.com https://atomicdex.io/ https://safe.trade/
https://nonkyc.io/

58

https://nonkyc.io/
https://xeggex.com/market/MCL_USDT
https://pro.kriptrade.com/trade/MCL-TRY
https://safe.trade/
https://atomicdex.io/
https://www.coingecko.com/en/coins/marmara-credit-loops
https://coinpaprika.com/tr/converter/mcl-marmara-credit-loops/try-turkish-lira/1/
https://marmara.io/docs/IMSS2019_WhitePaper_Turkce.pdf
https://t.me/MarmaraChain
https://github.com/marmarachain
https://www.youtube.com/c/MarmaraCreditLoops
https://marmara.io/discord
https://marmara.io/blog/
https://marmara.io/
https://marmara.io/
https://marmara.io/
https://zincir.market/
https://zincir.market/
https://komodoplatform.com/en/wallets.html
https://github.com/marmarachain/marmara-connector/releases
https://github.com/marmarachain/marmara-connector/releases

Transactions on Cryptocurrency Exchanges and Obtaining MCL
There are five exchanges where you can trade MCL:
Kriptrade.com Xeggex.com
https://atomicdex.io/en/downloads/
Safe.trade Nonkyc.io

You can perform MCL-TL exchange on the Kriptrade.com exchange. This is the easiest way.
Since there is no direct exchange between TL and MCL in other exchanges yet,
We will try to explain other ways that can be followed. First, it is necessary to exchange TL with
other intermediary crypto units (BTC, USDT, LTC, etc.) and transfer it to the exchanges where we
can purchase MCL. There are alternatives such as Binance Turkey, BTCTurk and others for crypto
purchases with TL. Identity confirmation is required to transfer crypto money at the exchange
where you buy crypto with TL. Once you have your identity confirmed at the exchanges and
completed the waiting period, if any, for the transfer, you will be able to make the transfer.
For membership procedures, you can check out these relevant pages:

For trbinance.com (Binance Türkiye) :
https://www.trbinance.com/tr/support/faq/account-functions-guides/
727a8a3f2e0f4dffa6630bc9b5e2dda2
https://www.trbinance.com/tr/support/faq/kyc/18f81821e61b4bbbb8e33ba0b6ff07d6

For binance.com (Binance global) :
https://www.binance.com/tr/support/faq/binance-uygulamas%C4%B1nda-nas%C4%B1l-kay
%C4%B1t-olabilirsiniz-360042718372
https://www.binance.com/tr/support/faq/kimlik-do%C4%9Frulamas%C4%B1-nas%C4%B1l-
tamamlan%C4%B1r-360027287111

For btcturk.com:
https://bilgibankasi.btcturk.com/hc/tr/articles/360011741098-BtcTurk-e-Nas%C4%B1l-
%C3%9Cye-Olabilirim-
https://bilgibankasi.btcturk.com/hc/tr/articles/360011678437-BtcTurk-C%C3%BCzdan-
Aktivasyonu

We added these three exchanges to explain how the system works. After you understand how
transactions are carried out in these exchanges, you can check for yourself whether there are more
suitable opportunities in other "TL - cryptocurrency" exchanges.

When you send TL to your account on cryptocurrency exchanges, the money appears in your
account as it is. (Of course, unless your bank makes a deduction) (This is the case for Binance TR
and BTCTurk, we can say that the situation is generally the same, at least at the time of writing this
article*) You cannot make purchases with TL from Binance global, that will take you to Binance
Turkey (TRBinance). directs for this process.

TL deposit-withdrawal pages:
https://www.trbinance.com/blog/support-center-guides/binance-tr-hesab%C4%B1n%C4%B1za-nas
%C4%B1l-t%C3%BCrk-liras%C4%B1-yat%C4%B1r%C4%B1l%C4%B1r%3F-
82189e6491d9486fb04cf50588657106
https://www.trbinance.com/fees/schedule
https://kripto.btcturk.com/yardim/yatirma-cekme

59

https://kripto.btcturk.com/yardim/yatirma-cekme
https://www.trbinance.com/fees/schedule
https://www.trbinance.com/blog/support-center-guides/binance-tr-hesab%C4%B1n%C4%B1za-nas%C4%B1l-t%C3%BCrk-liras%C4%B1-yat%C4%B1r%C4%B1l%C4%B1r%3F-82189e6491d9486fb04cf50588657106
https://www.trbinance.com/blog/support-center-guides/binance-tr-hesab%C4%B1n%C4%B1za-nas%C4%B1l-t%C3%BCrk-liras%C4%B1-yat%C4%B1r%C4%B1l%C4%B1r%3F-82189e6491d9486fb04cf50588657106
https://www.trbinance.com/blog/support-center-guides/binance-tr-hesab%C4%B1n%C4%B1za-nas%C4%B1l-t%C3%BCrk-liras%C4%B1-yat%C4%B1r%C4%B1l%C4%B1r%3F-82189e6491d9486fb04cf50588657106
https://bilgibankasi.btcturk.com/hc/tr/articles/360011678437-BtcTurk-C%C3%BCzdan-Aktivasyonu
https://bilgibankasi.btcturk.com/hc/tr/articles/360011678437-BtcTurk-C%C3%BCzdan-Aktivasyonu
https://bilgibankasi.btcturk.com/hc/tr/articles/360011741098-BtcTurk-e-Nas%C4%B1l-%C3%9Cye-Olabilirim-
https://bilgibankasi.btcturk.com/hc/tr/articles/360011741098-BtcTurk-e-Nas%C4%B1l-%C3%9Cye-Olabilirim-
https://www.binance.com/tr/support/faq/kimlik-do%C4%9Frulamas%C4%B1-nas%C4%B1l-tamamlan%C4%B1r-360027287111
https://www.binance.com/tr/support/faq/kimlik-do%C4%9Frulamas%C4%B1-nas%C4%B1l-tamamlan%C4%B1r-360027287111
https://www.binance.com/tr/support/faq/binance-uygulamas%C4%B1nda-nas%C4%B1l-kay%C4%B1t-olabilirsiniz-360042718372
https://www.binance.com/tr/support/faq/binance-uygulamas%C4%B1nda-nas%C4%B1l-kay%C4%B1t-olabilirsiniz-360042718372
https://www.trbinance.com/tr/support/faq/kyc/18f81821e61b4bbbb8e33ba0b6ff07d6
https://www.trbinance.com/tr/support/faq/account-functions-guides/727a8a3f2e0f4dffa6630bc9b5e2dda2
https://www.trbinance.com/tr/support/faq/account-functions-guides/727a8a3f2e0f4dffa6630bc9b5e2dda2
http://Nonkyc.io/
http://Safe.trade/
https://atomicdex.io/en/downloads/
https://xeggex.com/market/MCL_USDT
https://pro.kriptrade.com/trade/MCL-TRY

https://kripto.btcturk.com/yardim/limitler-ve-kurallar

It is not possible to buy and sell "cryptocurrency - TL" with balances below 100 TL on BTCTurk. In
TRBinance, the minimum order amount for "TL-crypto" transactions is 10 TL. (on 26.11.2023)

Trading rules:
https://www.trbinance.com/trade-rule
https://bilgibankasi.pro.btcturk.com/hc/tr/articles/360012003838-Minimum-Al%C4%B1m-Sat
%C4%B1m-Limitleri-Nelerdir-

You should keep in mind that after the TL appears in your account, exchanges charge a certain
commission for the TL - cryptocurrency exchange and the purchases and sales of cryptocurrencies
among themselves. Since these commissions can be updated, it is useful to follow the rates on the
relevant pages of the exchange you are trading on:
https://www.trbinance.com/fees/schedule
https://kripto.btcturk.com/yardim/komisyonlar
https://www.binance.com/tr/fee/trading

Pairing your Binance and TrBinance accounts allows you to receive some units such as KMD that
are not available on TRBinance. With Binance transfer, you can transfer crypto currencies to your
Binance global accounts free of charge, and in the same way, you can withdraw your global crypto
savings to your TRBinance accounts.
How to Match Binance and Binance TR Account? :
https://www.trbinance.com/blog/5/0b697802eff64f2d800f4cd2abb7b0e6

After purchasing cryptocurrency with TL, you can make the transfer for MCL purchase. (Of course,
if you have completed the waiting periods for cryptocurrency transfers in the exchanges, if any) You
can make transfers through the blockchain networks supported by both exchanges you will make
the transaction. It will be more economical to make transactions through networks with low
withdrawal fees. However, before making transactions with networks with low withdrawal fees, you
should carefully check whether you can reach the cryptocurrency you want to buy MCL or similar
with this cryptocurrency on the opposite exchange. For example, if you transfer LTC to the
safe.trade exchange, you can transfer to the LTC-BTC & LTC-USDT markets and the MCL-BTC &
MCL-USDT markets. It is useful to check in advance whether the exchanges you plan to switch to
are active (whether there is an opportunity to buy or sell at an affordable price without waiting too
long).

https://www.binance.com/tr/fee/cryptoFee
https://kripto.btcturk.com/yardim/komisyonlar
https://kripto.btcturk.com/yardim/limitler-ve-kurallar

After checking the withdrawal fee you will pay for the transfer, the minimum withdrawal fee you
can make (it is written on the withdrawal page, you will receive a warning if you try to send it
below), and whether the other exchange has that network, you should also check the minimum
deposit fee in the exchange you will make the transfer to. Unfortunately, stock exchanges do not
pay much attention to tears for amounts below the minimum deposit amount. Relevant links of the
stock exchanges where you can make these checks in MCL trading:

60

https://kripto.btcturk.com/yardim/limitler-ve-kurallar
https://kripto.btcturk.com/yardim/komisyonlar
https://www.binance.com/tr/fee/cryptoFee
https://www.trbinance.com/blog/5/0b697802eff64f2d800f4cd2abb7b0e6
https://www.binance.com/tr/fee/trading
https://kripto.btcturk.com/yardim/komisyonlar
https://www.trbinance.com/fees/schedule
https://bilgibankasi.pro.btcturk.com/hc/tr/articles/360012003838-Minimum-Al%C4%B1m-Sat%C4%B1m-Limitleri-Nelerdir-
https://bilgibankasi.pro.btcturk.com/hc/tr/articles/360012003838-Minimum-Al%C4%B1m-Sat%C4%B1m-Limitleri-Nelerdir-
https://www.trbinance.com/trade-rule
https://kripto.btcturk.com/yardim/limitler-ve-kurallar

https://nonkyc.io/fees
https://safe.trade/fees
Additionally, for final checks, you can find information not included in these links on the deposit
and withdrawal pages of the relevant coins.

In Komodo Wallet, you can see the advantages that decentralized platforms provide to users. No
transaction fees are charged from market makers in buying-selling transactions. However, buyers
are charged a 0.13% fee. For buyers using Komodo (KMD), the transaction fee is discounted by
10%, making it only 0.117%. Decentralized platforms do not charge any withdrawal fees but do
charge network costs that are paid to the validator of the relevant blockchain.

To make a comparison for buying and selling transactions, Binance receives 0.1% from the buyer
and market maker (75 per hundred thousand if commission payment approval is given with BNB);
0.08% from market maker and 0.12% from buyer at BTCTurk; While there is no commission for
the market maker in Komodo Wallet, it is 0.13% for the buyer (0.117% if they hold KMD);
Safe.trade 0.1% from taker and market maker (was before server upgrade-interface change);
Nonkyc.io charges a commission of 0.2% from buyers and market makers (discounts are provided
for those who hold NonKYC Tokens, and there is also a 25% discount if commission payment is
made with nonkyc).

When we compare withdrawal fees, Komodo Wallet, which is a decentralized platform, appears to
be ahead by far as it only reflects network costs to users. Nonkyc.io has set the withdrawal fee as 1
USD for all units, and the advantage of nonkyc.io is the commission income it provides to users
with its liquidity pools. Binance, BtcTurk and safe.trade add withdrawal fees to the transfer fees at
varying rates. You can follow the current fees from the links we shared in the article.

Let's give an example of some coins with low withdrawal fees on Binance:
LTC (via Litecoin network): 0.001 LTC (Approx. 2 TL)
ETC (via Ethereum Classic network): 0.008 ETC (Approx. 4.50 TL)
RVN (via Ravencoin network): 1 RVN (About 52 cents)
AVAX (via Avalanche network): 0.008 AVAX (Approx. 4.95 TL)
BNB (with BNB Smart chain - bep20): 0.0005 BNB (Approximately 3.37 TL)
BTC (with BNB Smart chain - bep20): 0.0000074 BTC (Approx. 8.07 TL)
USDT(with BNB Smart chain - bep20): 0.3 USDT (Approximately 8.67 TL)
KMD (with Smart chain): 0.002 KMD (Approximately 1.5 cents)

You can withdraw with BTC for free at BTCTurk. However, the minimum withdrawal amount is
0.0005 BTC (Approximately 543 TL). The minimum BTC withdrawal amount with Binance BNB
Smart chain - bep20 is 0.000015 BTC. (Approximately 16.36 TL) Therefore, BTCTurk can be
preferred for BTC transfers over 550 TL, and Binance can be preferred for lower amounts.

Currently, Binance seems to be more advantageous in sending USDT with the BNB Smart chain
(bep20) network. (For exchanges where you can buy MCL)

For AVAX (for Avalanche c-chain and Avalanche x-chain networks) withdrawal, BTCTurk stands
out with its withdrawal fee of 0.005 Avax (approximately 3.07 TL).

Another alternative is to switch to other exchanges by purchasing RVN from TRBinance. MCL
purchase can be made by converting RVN into one of the units traded with MCL on the relevant
stock exchange.

61

https://safe.trade/fees
https://nonkyc.io/fees

After switching to Binance global with a free Binance transfer by purchasing USDT or BTC from
TRBinance, you can purchase MCL with Komodo Wallet by purchasing and transferring KMD.

LTC is one of the important coins that allows economical transfer between exchanges with low
transfer fees.

MCL is a coin with its own intelligent chain and extremely low transfer fees. The withdrawal fee on
Komodo Wallet is only 0.00001 MCL. (Approximately 0.000005 TL) Safe.trade applies a
withdrawal fee of 0.01 MCL (Approximately 0.005 TL). As you know, Nonkyc.io applies a
standard fee to all coins.

As a result, if you understand how the system works among blockchain networks, you can
determine your own path and review different alternatives. You can progress by making
advantageous purchases and sales across networks.
We made the center kick and passed the pass to you, now the ball is in your court :)

62

63

Note: The calculations in this article were made according to the exchange rates on November 26,
2023.

*This article was prepared while the law on cryptocurrencies was in draft form.

64

Answers to Frequently Asked Questions
The simplest way to install a Marmara Chain is to install using the latest version of Marmara
Connector. Marmara Connector will check whether the Marmara Chain is installed in your system
and if not, it will perform the installation process if you give approval. If you have installed the
Marmara Chain on your operating system before installing the Marmara Connector, it will connect
and enable you to easily perform your MCL operations through the graphical interface. If you
encounter any problems during the installation process, you can get help and support from discord
or telegram. Download and install the appropriate package for your operating system from
https://github.com/marmarachain/marmara-connector/releases

In order to use Marmara credit loops, the user is expected to have a pubkey and start the chain with
this pubkey. It is necessary to has a pubkey in order for the coins earned through mining and staking
to go to an account. If the chain is not started with pubkey, mining and staking transactions will be
wasted.

During the specified transaction period, credit loops can be circulated in the economy in exchange
for goods and services up to the 1000th node.

MCL can be moved economically between cryptocurrency exchanges and converted into other
values with low transfer fees.

The synchronization time of the Marmara chain varies depending
on your network connection speed, your computer's processor
power, the read-write speed of your drive where the blocks are
recorded, and similar factors. Synchronization can be completed
in up to 1 day under good conditions, or in 2-3 days under
slightly more disadvantageous conditions, but on computers that
barely meet the minimum requirements, the synchronization
period may take longer. You can monitor the synchronization
time via Marmara Connector. In cases where the synchronization time may be long, you can speed
up the process with bootstrap. (Bootstrap is not recommended, it is better to perform the
synchronization yourself.) When synchronization is achieved in Marmara Connector, it will light
green against chain status and chain sync as shown in the picture. Do not open staking or mining
without synchronization, you may corrupt the database and have to synchronize again. When
synchronized, we recommend creating a wallet address, transferring MCL to your account, then
creating loops. It takes more time to find with 1x. Half of the rewards are normal coins and the
other half are active coins. Normal coins are shown in odd blocks and active coins are shown in
double digits. The contents of single-digit coins appear on the Explorer, while those with double
digits are the smart contract addresses of active coins. From the outside it appears as zero on the
Explorer, but it is not zero. The power of credit cycles is much greater when staking on Marmara
Chain. Sometimes it can even exceed 3x. If everyone is locking in the loop, the loops can drop to
just under 3x.

Staking cannot be done with normal coins. You must first lock the amount you want to stake. When
locking, it is recommended to lock it in small sections such as 300&500&1000 MCL at a time.
Similarly, when transferring to loops, it will be useful to create loops in pieces instead of locking
them all at once. Throwing a smaller number of single hooks increases the chances, rather than one
large single-hook line at a time. It also speeds up loops. Because this locked payment information is
used in loops.

65

https://github.com/marmarachain/marmara-connector/releases
https://t.me/MarmaraChain
https://marmara.io/discord
https://github.com/marmarachain/marmara-connector/releases
https://github.com/marmarachain/marmara-connector/releases

You can easily lock and unlock MCL under the Marmara Connector "Wallet" tab.

You can start making consistent profits 8-10 days after you start staking. We can compare the initial
waiting period to a kind of incubation process. But if you lock it in small pieces like 300 & 500
MCL and then include them in loops, you have a chance to find the blocks faster. Under these
conditions, if you start with a sufficient amount of MCL, you can find a block even from the first
day.

It would be a good idea to take a look at the Zincir.market application which allows you to shop
with MCL and you can sell your own products with MCL without commission.

Mining is not recommended unless you have a powerful computer with high processing power. If
you are going to do it, it would be better to use a suitable machine for this job. Recommended are
Asic miner devices. Instead of mining, you can produce MCL by staking with simpler computers.

Bootstrap backup is taken daily in the second browser. https://explorer2.marmara.io/bootstrap

You can make Marmara credit loop request and transfer request under Marmara Connector “Credit
Loops - Make Loop Request” tab.

66

https://explorer2.marmara.io/bootstrap
https://zincir.market/

You can see and accept easily incoming Marmara credit loop request and transfer requests under
Marmara Connector “Credit Loops - Incoming Loop Request” tab.

To see the latest current status in the system, the last block status and the current block status must
be synchronized. For example, let's say someone sent you 5 MCLs, you saw it in your account.
However, there was a problem in the following days and you started to load the blocks again from
scratch. You will not be able to see the 5 MCLs in your account until the corresponding block is
uploaded. So what you see on your system is the status of the last block you loaded.

For Ubuntu or Linux Mint: If you install the Marmara chain in advance, you can keep it in the src
folder in the marmara folder in your home directory so that the Marmara Connector system can find
it (with marmara-cli and marmarad inside the directory)

Related formulation for staking account:
([(MyActivated/TotalActivated)+(MyLoops/TotalInLoops)]*3)*8100

During the installation process with Marmara Connector, you may encounter problems such as curl
installation problems or zip files not opening, especially on Windows systems older than Windows
10. In this case, you can get around the problem by unzipping the zip file yourself or installing curl
yourself.

You can perform automatic installation on the virtual server with Marmara Connector. There is no
need to deal with codes anymore. After selecting the host option instead of local, simply enter
details such as IP address and password. Connector does the rest. The chain runs on the server
independently of the Connector. The connector is only for connecting and doing control and similar
works.

You can create your own staking and investment pool on Marmara Chain with Marmara Connector,
which allows you to easily set up the Marmara Blockchain and stake with 3x power by making
credit cycles similar to post-dated checks. The new Marmara Connector comes with a gain
measurement tool that can make precise measurements to precisely count the gains between two
different dates on a pool. The Marmara Investment pool concept is integrated with an application,
allowing you to add a self-financing feature to your projects. For example, thanks to integration

67

with the investment pool, it is possible to reset commissions for both buyers and sellers on an e-
commerce site. Marmara Chain can likewise be integrated with each project either with a stake-
based crowdfunding system or independently. For example, you can integrate the investment pool
with a scholarship system. The funds collected in the investment pool can be integrated with 3x
staking and used to distribute regular income to scholars. Or it can be integrated with a performance
system. Self-financing feature can be provided by integrating with Supply Chain Management or
ERP applications.

How to Start Loops from Command Line
Loops are done between two people. So you need someone else to issue or receive. It is easier
when you shop with MCL. The receiver will type the following command line:
marmarareceive “pubkeyofissuer” MCLamount MARMARA time '{"avalcount":"0"}'

Time is set in minutes. As there are 1440 minutes in a day, you have to multiply day number by
1440. If you want to receive 300 MCL in 3 months, type the following command line by changing
issuer’s pubkey:
marmarareceive “pubkeyofissuer” 300 MARMARA 129600 '{"avalcount":"0"}'

This will give you hex, you need to type sendrawtransaction HEXnumber. This step will generate
TXID which has to be send to the issuer.

The issuer needs to type the following command line to confirm the loop:
marmaraissue "receiver’s pubkey" '{"avalcount":"0", "autosettlement":"true",
"autoinsurance":"true", "disputeexpires":"0", "EscrowOn":"false", "BlockageAmount":"0" }'
TXID provided by the receiver

And type sendrawtransaction hexnumber as well.
That’s all

You can find the answers to the different questions you are looking for on Marmara D iscord or
Marmara Telegram channels.

68

https://t.me/MarmaraChain
https://marmara.io/discord
https://marmara.io/discord
https://marmara.io/discord

Links
Official Website:
http://marmara.io/

History:
https://marmara.io/tr/history

Team:
https://marmara.io/tr/aboutus

Wallets:
https://marmara.io/tr/wallet

You can buy MCL from:
Kriptrade.com
Xeggex.com
https://atomicdex.io/
https://safe.trade/
https://nonkyc.io/

Blog:
https://marmara.io/blog/

Whitepaper:
https://marmara.io/docs/IMSS2019_WhitePaper_English.pdf

Block Explorers:
https://explorer.marmara.io/
http://explorer2.marmara.io/
http://explorer3.marmara.io/

Coin Supply:
https://marmara.io/tr/marmara-coin-supply

Staking Info:
http://stake.marmara.io/ (Staking calculator)
https://marmara.io/blog/marmara-chain-1/marmara-staking-calculation-22
https://marmara.io/blog/marmara-chain-1/discover-the-superior-staking-rewards-with-marmara-
mcl-coin-a-comprehensive-comparison-23

DEX Stats:
https://mcl.explorer.dexstats.info/

MCL Exchange Rates:
https://coinpaprika.com/tr/converter/mcl-marmara-credit-loops/try-turkish-lira/1/
https://www.coingecko.com/en/coins/marmara-credit-loops

Bootstrap backup is taken daily in https://explorer2.marmara.io/bootstrap
Bootstrap alternative link : https://eu.bootstrap.dexstats.info/MCL-bootstrap.tar.gz

69

https://eu.bootstrap.dexstats.info/MCL-bootstrap.tar.gz
https://explorer2.marmara.io/bootstrap
https://www.coingecko.com/en/coins/marmara-credit-loops
https://coinpaprika.com/tr/converter/mcl-marmara-credit-loops/try-turkish-lira/1/
https://mcl.explorer.dexstats.info/
https://marmara.io/blog/marmara-chain-1/discover-the-superior-staking-rewards-with-marmara-mcl-coin-a-comprehensive-comparison-23
https://marmara.io/blog/marmara-chain-1/discover-the-superior-staking-rewards-with-marmara-mcl-coin-a-comprehensive-comparison-23
https://marmara.io/blog/marmara-chain-1/marmara-staking-calculation-22
http://stake.marmara.io/
https://marmara.io/tr/marmara-coin-supply
http://explorer3.marmara.io/
http://explorer2.marmara.io/
https://explorer.marmara.io/
https://marmara.io/docs/IMSS2019_WhitePaper_English.pdf
https://marmara.io/blog/
https://nonkyc.io/
https://safe.trade/
https://atomicdex.io/
https://xeggex.com/market/MCL_USDT
https://pro.kriptrade.com/trade/MCL-TRY
https://marmara.io/tr/wallet
https://marmara.io/tr/aboutus
https://marmara.io/tr/history
http://marmara.io/

Other Links:
https://marmara.io/discord
https://t.me/MarmaraChain
https://marmarachain-mcl.medium.com/
https://github.com/marmarachain
https://github.com/marmarachain/marmara/releases
https://zincir.market
https://mclmarket.com/
http://www.drcetiner.org/
https://komodoplatform.com/
https://discord.com/invite/4a3J7gAmC5
https://github.com/KomodoPlatform
https://github.com/marmarachain/marmara/wiki
https://github.com/marmarachain/marmara-connector/wiki
https://www.youtube.com/@MarmaraCreditLoops/videos
https://www.youtube.com/@gultekincetiner/videos
https://www.youtube.com/@KomodoPlatformOfficial/videos
https://www.youtube.com/channel/UCBabFGXtvtThqKaYYv5hdVA/videos
https://twitter.com/marmarachain
https://www.instagram.com/marmarachainofficial/
https://www.facebook.com/groups/marmarachain
https://coinpaprika.com/coin/mcl-marmara-credit-loops/
https://www.livecoinwatch.com/exchange/atomicdex
https://cryptorating.eu/whitepapers/Komodo/2018-02-14-Komodo-White-Paper-Full.pdf
https://developers.komodoplatform.com/basic-docs/atomicdex/introduction-to-atomicdex.html
https://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf
https://developers.komodoplatform.com/
http://sanaloba.org/
http://guneskoyu.org/

70

http://guneskoyu.org/
http://sanaloba.org/
https://developers.komodoplatform.com/
https://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf
https://developers.komodoplatform.com/basic-docs/atomicdex/introduction-to-atomicdex.html
https://cryptorating.eu/whitepapers/Komodo/2018-02-14-Komodo-White-Paper-Full.pdf
https://www.livecoinwatch.com/exchange/atomicdex
https://coinpaprika.com/coin/mcl-marmara-credit-loops/
https://www.facebook.com/groups/marmarachain
https://www.instagram.com/marmarachainofficial/
https://twitter.com/marmarachain
https://www.youtube.com/channel/UCBabFGXtvtThqKaYYv5hdVA/videos
https://www.youtube.com/@KomodoPlatformOfficial/videos
https://www.youtube.com/@gultekincetiner/videos
https://www.youtube.com/@MarmaraCreditLoops/videos
https://github.com/marmarachain/marmara-connector/wiki
https://github.com/marmarachain/marmara/wiki
https://github.com/KomodoPlatform
https://discord.com/invite/4a3J7gAmC5
https://komodoplatform.com/
http://www.drcetiner.org/
https://mclmarket.com/
https://zincir.market/
https://github.com/marmarachain/marmara/releases
https://github.com/marmarachain
https://marmarachain-mcl.medium.com/
https://t.me/MarmaraChain
https://marmara.io/discord

Important Notice to Users

Marmara Chain
This software is based on Komodo which is based on zcash and is considered experimental and is
continously undergoing heavy development. Marmara Credit Loops is experimental and a work-in-
progress. Use at your own risk.

At no point of time do the MCL and Komodo Platform developers take any responsibility for any
damage out of the usage of this software.

Marmara Connector
Marmara Connector is experimental and a work-in-progress. Use at your own risk.

Sources:
https://github.com/marmarachain/marmara/wiki/Important-Notice-to-Users
https://github.com/marmarachain/marmara-connector/wiki/Important-Notice-to-Users

Issue Reporting Format – Marmara Connector
Please report your issues with format given below by submitting them in here:
https://github.com/marmarachain/marmara-connector/issues
Impacted versions:

Steps to reproduce:
....

Current behavior:
.....

Expected behavior:
....

Video/Screenshot link (optional):

71

https://github.com/marmarachain/marmara-connector/issues
https://github.com/marmarachain/marmara-connector/wiki/Important-Notice-to-Users
https://github.com/marmarachain/marmara/wiki/Important-Notice-to-Users

License Details

Marmara Chain & Marmara Connector
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Sources:
https://github.com/marmarachain/marmara/wiki/License-Details
https://github.com/marmarachain/marmara-connector

72

https://github.com/marmarachain/marmara-connector
https://github.com/marmarachain/marmara/wiki/License-Details

	Contents
	Marmara Credit Loops
	What is MCL? What are the Features?
	How Does MCL Work? How Can You Earn MCL?
	Easy Installation of Marmara Blockchain and MCL Coin Production with Marmara Connector
	Build Marmara from Source
	Linux
	MacOS
	Windows

	Getting Started with Marmara
	How to make Marmara Credit Loops
	Installing Marmara from Precompiled Binaries
	Linux
	MacOS
	Windows

	Understanding Marmara Chain
	Unlock the Power of Marmara Blockchain Staking
	Experience the Power of MCL Staking on Marmara Chain: Unlocking Unique Benefits in the Crypto Economy
	Why Marmara (MCL) Coin Stands Out
	Marmara Connector
	Installing Marmara Connector
	Marmara Connector Software Specifications Document
	Packaging Guide for Marmara Connector for Different OS
	Using QT Designer to Build Marmara Connector Front End

	MCL Concise Beginner's Guide
	Transactions on Cryptocurrency Exchanges and Obtaining MCL
	Answers to Frequently Asked Questions
	Links
	Important Notice to Users
	Issue Reporting Format – Marmara Connector
	License Details

